Spaces:
Running
Running
File size: 17,333 Bytes
67c46fd |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 |
# Copyright 2022 Kwangyoun Kim (ASAPP inc.)
# Apache 2.0 (http://www.apache.org/licenses/LICENSE-2.0)
"""E-Branchformer encoder definition.
Reference:
Kwangyoun Kim, Felix Wu, Yifan Peng, Jing Pan,
Prashant Sridhar, Kyu J. Han, Shinji Watanabe,
"E-Branchformer: Branchformer with Enhanced merging
for speech recognition," in SLT 2022.
"""
import logging
from typing import List, Optional, Tuple
import torch
import torch.nn as nn
from funasr_detach.models.ctc.ctc import CTC
from funasr_detach.models.branchformer.cgmlp import ConvolutionalGatingMLP
from funasr_detach.models.branchformer.fastformer import FastSelfAttention
from funasr_detach.models.transformer.utils.nets_utils import (
get_activation,
make_pad_mask,
)
from funasr_detach.models.transformer.attention import ( # noqa: H301
LegacyRelPositionMultiHeadedAttention,
MultiHeadedAttention,
RelPositionMultiHeadedAttention,
)
from funasr_detach.models.transformer.embedding import ( # noqa: H301
LegacyRelPositionalEncoding,
PositionalEncoding,
RelPositionalEncoding,
ScaledPositionalEncoding,
)
from funasr_detach.models.transformer.layer_norm import LayerNorm
from funasr_detach.models.transformer.positionwise_feed_forward import (
PositionwiseFeedForward,
)
from funasr_detach.models.transformer.utils.repeat import repeat
from funasr_detach.models.transformer.utils.subsampling import (
Conv2dSubsampling,
Conv2dSubsampling2,
Conv2dSubsampling6,
Conv2dSubsampling8,
TooShortUttError,
check_short_utt,
)
from funasr_detach.register import tables
class EBranchformerEncoderLayer(torch.nn.Module):
"""E-Branchformer encoder layer module.
Args:
size (int): model dimension
attn: standard self-attention or efficient attention
cgmlp: ConvolutionalGatingMLP
feed_forward: feed-forward module, optional
feed_forward: macaron-style feed-forward module, optional
dropout_rate (float): dropout probability
merge_conv_kernel (int): kernel size of the depth-wise conv in merge module
"""
def __init__(
self,
size: int,
attn: torch.nn.Module,
cgmlp: torch.nn.Module,
feed_forward: Optional[torch.nn.Module],
feed_forward_macaron: Optional[torch.nn.Module],
dropout_rate: float,
merge_conv_kernel: int = 3,
):
super().__init__()
self.size = size
self.attn = attn
self.cgmlp = cgmlp
self.feed_forward = feed_forward
self.feed_forward_macaron = feed_forward_macaron
self.ff_scale = 1.0
if self.feed_forward is not None:
self.norm_ff = LayerNorm(size)
if self.feed_forward_macaron is not None:
self.ff_scale = 0.5
self.norm_ff_macaron = LayerNorm(size)
self.norm_mha = LayerNorm(size) # for the MHA module
self.norm_mlp = LayerNorm(size) # for the MLP module
self.norm_final = LayerNorm(size) # for the final output of the block
self.dropout = torch.nn.Dropout(dropout_rate)
self.depthwise_conv_fusion = torch.nn.Conv1d(
size + size,
size + size,
kernel_size=merge_conv_kernel,
stride=1,
padding=(merge_conv_kernel - 1) // 2,
groups=size + size,
bias=True,
)
self.merge_proj = torch.nn.Linear(size + size, size)
def forward(self, x_input, mask, cache=None):
"""Compute encoded features.
Args:
x_input (Union[Tuple, torch.Tensor]): Input tensor w/ or w/o pos emb.
- w/ pos emb: Tuple of tensors [(#batch, time, size), (1, time, size)].
- w/o pos emb: Tensor (#batch, time, size).
mask (torch.Tensor): Mask tensor for the input (#batch, 1, time).
cache (torch.Tensor): Cache tensor of the input (#batch, time - 1, size).
Returns:
torch.Tensor: Output tensor (#batch, time, size).
torch.Tensor: Mask tensor (#batch, time).
"""
if cache is not None:
raise NotImplementedError("cache is not None, which is not tested")
if isinstance(x_input, tuple):
x, pos_emb = x_input[0], x_input[1]
else:
x, pos_emb = x_input, None
if self.feed_forward_macaron is not None:
residual = x
x = self.norm_ff_macaron(x)
x = residual + self.ff_scale * self.dropout(self.feed_forward_macaron(x))
# Two branches
x1 = x
x2 = x
# Branch 1: multi-headed attention module
x1 = self.norm_mha(x1)
if isinstance(self.attn, FastSelfAttention):
x_att = self.attn(x1, mask)
else:
if pos_emb is not None:
x_att = self.attn(x1, x1, x1, pos_emb, mask)
else:
x_att = self.attn(x1, x1, x1, mask)
x1 = self.dropout(x_att)
# Branch 2: convolutional gating mlp
x2 = self.norm_mlp(x2)
if pos_emb is not None:
x2 = (x2, pos_emb)
x2 = self.cgmlp(x2, mask)
if isinstance(x2, tuple):
x2 = x2[0]
x2 = self.dropout(x2)
# Merge two branches
x_concat = torch.cat([x1, x2], dim=-1)
x_tmp = x_concat.transpose(1, 2)
x_tmp = self.depthwise_conv_fusion(x_tmp)
x_tmp = x_tmp.transpose(1, 2)
x = x + self.dropout(self.merge_proj(x_concat + x_tmp))
if self.feed_forward is not None:
# feed forward module
residual = x
x = self.norm_ff(x)
x = residual + self.ff_scale * self.dropout(self.feed_forward(x))
x = self.norm_final(x)
if pos_emb is not None:
return (x, pos_emb), mask
return x, mask
@tables.register("encoder_classes", "EBranchformerEncoder")
class EBranchformerEncoder(nn.Module):
"""E-Branchformer encoder module."""
def __init__(
self,
input_size: int,
output_size: int = 256,
attention_heads: int = 4,
attention_layer_type: str = "rel_selfattn",
pos_enc_layer_type: str = "rel_pos",
rel_pos_type: str = "latest",
cgmlp_linear_units: int = 2048,
cgmlp_conv_kernel: int = 31,
use_linear_after_conv: bool = False,
gate_activation: str = "identity",
num_blocks: int = 12,
dropout_rate: float = 0.1,
positional_dropout_rate: float = 0.1,
attention_dropout_rate: float = 0.0,
input_layer: Optional[str] = "conv2d",
zero_triu: bool = False,
padding_idx: int = -1,
layer_drop_rate: float = 0.0,
max_pos_emb_len: int = 5000,
use_ffn: bool = False,
macaron_ffn: bool = False,
ffn_activation_type: str = "swish",
linear_units: int = 2048,
positionwise_layer_type: str = "linear",
merge_conv_kernel: int = 3,
interctc_layer_idx=None,
interctc_use_conditioning: bool = False,
):
super().__init__()
self._output_size = output_size
if rel_pos_type == "legacy":
if pos_enc_layer_type == "rel_pos":
pos_enc_layer_type = "legacy_rel_pos"
if attention_layer_type == "rel_selfattn":
attention_layer_type = "legacy_rel_selfattn"
elif rel_pos_type == "latest":
assert attention_layer_type != "legacy_rel_selfattn"
assert pos_enc_layer_type != "legacy_rel_pos"
else:
raise ValueError("unknown rel_pos_type: " + rel_pos_type)
if pos_enc_layer_type == "abs_pos":
pos_enc_class = PositionalEncoding
elif pos_enc_layer_type == "scaled_abs_pos":
pos_enc_class = ScaledPositionalEncoding
elif pos_enc_layer_type == "rel_pos":
assert attention_layer_type == "rel_selfattn"
pos_enc_class = RelPositionalEncoding
elif pos_enc_layer_type == "legacy_rel_pos":
assert attention_layer_type == "legacy_rel_selfattn"
pos_enc_class = LegacyRelPositionalEncoding
logging.warning(
"Using legacy_rel_pos and it will be deprecated in the future."
)
else:
raise ValueError("unknown pos_enc_layer: " + pos_enc_layer_type)
if input_layer == "linear":
self.embed = torch.nn.Sequential(
torch.nn.Linear(input_size, output_size),
torch.nn.LayerNorm(output_size),
torch.nn.Dropout(dropout_rate),
pos_enc_class(output_size, positional_dropout_rate, max_pos_emb_len),
)
elif input_layer == "conv2d":
self.embed = Conv2dSubsampling(
input_size,
output_size,
dropout_rate,
pos_enc_class(output_size, positional_dropout_rate, max_pos_emb_len),
)
elif input_layer == "conv2d2":
self.embed = Conv2dSubsampling2(
input_size,
output_size,
dropout_rate,
pos_enc_class(output_size, positional_dropout_rate, max_pos_emb_len),
)
elif input_layer == "conv2d6":
self.embed = Conv2dSubsampling6(
input_size,
output_size,
dropout_rate,
pos_enc_class(output_size, positional_dropout_rate, max_pos_emb_len),
)
elif input_layer == "conv2d8":
self.embed = Conv2dSubsampling8(
input_size,
output_size,
dropout_rate,
pos_enc_class(output_size, positional_dropout_rate, max_pos_emb_len),
)
elif input_layer == "embed":
self.embed = torch.nn.Sequential(
torch.nn.Embedding(input_size, output_size, padding_idx=padding_idx),
pos_enc_class(output_size, positional_dropout_rate, max_pos_emb_len),
)
elif isinstance(input_layer, torch.nn.Module):
self.embed = torch.nn.Sequential(
input_layer,
pos_enc_class(output_size, positional_dropout_rate, max_pos_emb_len),
)
elif input_layer is None:
if input_size == output_size:
self.embed = None
else:
self.embed = torch.nn.Linear(input_size, output_size)
else:
raise ValueError("unknown input_layer: " + input_layer)
activation = get_activation(ffn_activation_type)
if positionwise_layer_type == "linear":
positionwise_layer = PositionwiseFeedForward
positionwise_layer_args = (
output_size,
linear_units,
dropout_rate,
activation,
)
elif positionwise_layer_type is None:
logging.warning("no macaron ffn")
else:
raise ValueError("Support only linear.")
if attention_layer_type == "selfattn":
encoder_selfattn_layer = MultiHeadedAttention
encoder_selfattn_layer_args = (
attention_heads,
output_size,
attention_dropout_rate,
)
elif attention_layer_type == "legacy_rel_selfattn":
assert pos_enc_layer_type == "legacy_rel_pos"
encoder_selfattn_layer = LegacyRelPositionMultiHeadedAttention
encoder_selfattn_layer_args = (
attention_heads,
output_size,
attention_dropout_rate,
)
logging.warning(
"Using legacy_rel_selfattn and it will be deprecated in the future."
)
elif attention_layer_type == "rel_selfattn":
assert pos_enc_layer_type == "rel_pos"
encoder_selfattn_layer = RelPositionMultiHeadedAttention
encoder_selfattn_layer_args = (
attention_heads,
output_size,
attention_dropout_rate,
zero_triu,
)
elif attention_layer_type == "fast_selfattn":
assert pos_enc_layer_type in ["abs_pos", "scaled_abs_pos"]
encoder_selfattn_layer = FastSelfAttention
encoder_selfattn_layer_args = (
output_size,
attention_heads,
attention_dropout_rate,
)
else:
raise ValueError("unknown encoder_attn_layer: " + attention_layer_type)
cgmlp_layer = ConvolutionalGatingMLP
cgmlp_layer_args = (
output_size,
cgmlp_linear_units,
cgmlp_conv_kernel,
dropout_rate,
use_linear_after_conv,
gate_activation,
)
self.encoders = repeat(
num_blocks,
lambda lnum: EBranchformerEncoderLayer(
output_size,
encoder_selfattn_layer(*encoder_selfattn_layer_args),
cgmlp_layer(*cgmlp_layer_args),
positionwise_layer(*positionwise_layer_args) if use_ffn else None,
(
positionwise_layer(*positionwise_layer_args)
if use_ffn and macaron_ffn
else None
),
dropout_rate,
merge_conv_kernel,
),
layer_drop_rate,
)
self.after_norm = LayerNorm(output_size)
if interctc_layer_idx is None:
interctc_layer_idx = []
self.interctc_layer_idx = interctc_layer_idx
if len(interctc_layer_idx) > 0:
assert 0 < min(interctc_layer_idx) and max(interctc_layer_idx) < num_blocks
self.interctc_use_conditioning = interctc_use_conditioning
self.conditioning_layer = None
def output_size(self) -> int:
return self._output_size
def forward(
self,
xs_pad: torch.Tensor,
ilens: torch.Tensor,
prev_states: torch.Tensor = None,
ctc: CTC = None,
max_layer: int = None,
) -> Tuple[torch.Tensor, torch.Tensor, Optional[torch.Tensor]]:
"""Calculate forward propagation.
Args:
xs_pad (torch.Tensor): Input tensor (#batch, L, input_size).
ilens (torch.Tensor): Input length (#batch).
prev_states (torch.Tensor): Not to be used now.
ctc (CTC): Intermediate CTC module.
max_layer (int): Layer depth below which InterCTC is applied.
Returns:
torch.Tensor: Output tensor (#batch, L, output_size).
torch.Tensor: Output length (#batch).
torch.Tensor: Not to be used now.
"""
masks = (~make_pad_mask(ilens)[:, None, :]).to(xs_pad.device)
if (
isinstance(self.embed, Conv2dSubsampling)
or isinstance(self.embed, Conv2dSubsampling2)
or isinstance(self.embed, Conv2dSubsampling6)
or isinstance(self.embed, Conv2dSubsampling8)
):
short_status, limit_size = check_short_utt(self.embed, xs_pad.size(1))
if short_status:
raise TooShortUttError(
f"has {xs_pad.size(1)} frames and is too short for subsampling "
+ f"(it needs more than {limit_size} frames), return empty results",
xs_pad.size(1),
limit_size,
)
xs_pad, masks = self.embed(xs_pad, masks)
elif self.embed is not None:
xs_pad = self.embed(xs_pad)
intermediate_outs = []
if len(self.interctc_layer_idx) == 0:
if max_layer is not None and 0 <= max_layer < len(self.encoders):
for layer_idx, encoder_layer in enumerate(self.encoders):
xs_pad, masks = encoder_layer(xs_pad, masks)
if layer_idx >= max_layer:
break
else:
xs_pad, masks = self.encoders(xs_pad, masks)
else:
for layer_idx, encoder_layer in enumerate(self.encoders):
xs_pad, masks = encoder_layer(xs_pad, masks)
if layer_idx + 1 in self.interctc_layer_idx:
encoder_out = xs_pad
if isinstance(encoder_out, tuple):
encoder_out = encoder_out[0]
intermediate_outs.append((layer_idx + 1, encoder_out))
if self.interctc_use_conditioning:
ctc_out = ctc.softmax(encoder_out)
if isinstance(xs_pad, tuple):
xs_pad = list(xs_pad)
xs_pad[0] = xs_pad[0] + self.conditioning_layer(ctc_out)
xs_pad = tuple(xs_pad)
else:
xs_pad = xs_pad + self.conditioning_layer(ctc_out)
if isinstance(xs_pad, tuple):
xs_pad = xs_pad[0]
xs_pad = self.after_norm(xs_pad)
olens = masks.squeeze(1).sum(1)
if len(intermediate_outs) > 0:
return (xs_pad, intermediate_outs), olens, None
return xs_pad, olens, None
|