Spaces:
Running
Running
File size: 21,213 Bytes
67c46fd |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 |
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
import logging
import math
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
from collections import namedtuple
from dataclasses import dataclass
from functools import partial
from omegaconf import MISSING, II
from typing import Optional, Callable
from funasr_detach.models.emotion2vec.fairseq_modules import compute_mask_indices
from funasr_detach.models.emotion2vec.fairseq_modules import GradMultiply
from funasr_detach.models.emotion2vec.fairseq_modules import index_put
logger = logging.getLogger(__name__)
MaskSeed = namedtuple("MaskSeed", ["seed", "update", "ids"])
MaskInfo = namedtuple("MaskInfo", ["x_unmasked", "mask", "ids_restore", "ids_keep"])
class ModalitySpecificEncoder(nn.Module):
def __init__(
self,
modality_cfg,
embed_dim: int,
local_encoder: nn.Module,
project_features: nn.Module,
fixed_positional_encoder: Optional[nn.Module],
relative_positional_encoder: Optional[nn.Module],
context_encoder: nn.Module,
decoder: nn.Module,
get_alibi_bias: Optional[Callable[[int, int, str, str], torch.Tensor]],
):
super().__init__()
self.modality_cfg = modality_cfg
self.local_encoder = local_encoder
self.project_features = project_features
self.fixed_positional_encoder = fixed_positional_encoder
self.relative_positional_encoder = relative_positional_encoder
self.context_encoder = context_encoder
self.decoder = decoder
self.get_alibi_bias = get_alibi_bias if modality_cfg.use_alibi_encoder else None
self.local_grad_mult = self.modality_cfg.local_grad_mult
self.extra_tokens = None
if modality_cfg.num_extra_tokens > 0:
self.extra_tokens = nn.Parameter(
torch.zeros(1, modality_cfg.num_extra_tokens, embed_dim)
)
if not modality_cfg.init_extra_token_zero:
nn.init.normal_(self.extra_tokens)
elif self.extra_tokens.size(1) > 1:
nn.init.normal_(self.extra_tokens[:, 1:])
self.alibi_scale = None
if self.get_alibi_bias is not None:
self.alibi_scale = nn.Parameter(
torch.full(
(
(
(modality_cfg.prenet_depth + modality_cfg.model_depth)
if modality_cfg.learned_alibi_scale_per_layer
else 1
),
1,
(
self.modality_cfg.num_alibi_heads
if modality_cfg.learned_alibi_scale_per_head
else 1
),
1,
1,
),
modality_cfg.alibi_scale,
dtype=torch.float,
),
requires_grad=modality_cfg.learned_alibi_scale,
)
if modality_cfg.learned_alibi and self.get_alibi_bias is not None:
assert modality_cfg.alibi_max_pos is not None
alibi_bias = self.get_alibi_bias(
batch_size=1,
time_steps=modality_cfg.alibi_max_pos,
heads=modality_cfg.num_alibi_heads,
scale=1.0,
dtype=torch.float,
device="cpu",
)
self.alibi_bias = nn.Parameter(alibi_bias)
self.get_alibi_bias = partial(
_learned_alibi_bias, alibi_bias=self.alibi_bias
)
def upgrade_state_dict_named(self, state_dict, name):
k = f"{name}.alibi_scale"
if k in state_dict and state_dict[k].dim() == 4:
state_dict[k] = state_dict[k].unsqueeze(0)
return state_dict
def convert_padding_mask(self, x, padding_mask):
return padding_mask
def decoder_input(self, x, mask_info: MaskInfo):
inp_drop = self.modality_cfg.decoder.input_dropout
if inp_drop > 0:
x = F.dropout(x, inp_drop, training=self.training, inplace=True)
num_extra = self.modality_cfg.num_extra_tokens
if mask_info is not None:
num_masked = mask_info.ids_restore.shape[1] - x.shape[1] + num_extra
mask_tokens = x.new_empty(
x.size(0),
num_masked,
x.size(-1),
).normal_(0, self.modality_cfg.mask_noise_std)
x_ = torch.cat([x[:, num_extra:], mask_tokens], dim=1)
x = torch.gather(x_, dim=1, index=mask_info.ids_restore)
if self.modality_cfg.decoder.add_positions_masked:
assert self.fixed_positional_encoder is not None
pos = self.fixed_positional_encoder(x, None)
x = x + (pos * mask_info.mask.unsqueeze(-1))
else:
x = x[:, num_extra:]
if self.modality_cfg.decoder.add_positions_all:
assert self.fixed_positional_encoder is not None
x = x + self.fixed_positional_encoder(x, None)
return x, mask_info
def local_features(self, features):
if self.local_grad_mult > 0:
if self.local_grad_mult == 1.0:
x = self.local_encoder(features)
else:
x = GradMultiply.apply(
self.local_encoder(features), self.local_grad_mult
)
else:
with torch.no_grad():
x = self.local_encoder(features)
x = self.project_features(x)
return x
def contextualized_features(
self,
x,
padding_mask,
mask,
remove_masked,
clone_batch: int = 1,
mask_seeds: Optional[torch.Tensor] = None,
precomputed_mask=None,
):
if padding_mask is not None:
padding_mask = self.convert_padding_mask(x, padding_mask)
local_features = x
if mask and clone_batch == 1:
local_features = local_features.clone()
orig_B, orig_T, _ = x.shape
pre_mask_B = orig_B
mask_info = None
x_pos = None
if self.fixed_positional_encoder is not None:
x = x + self.fixed_positional_encoder(x, padding_mask)
if mask:
if clone_batch > 1:
x = x.repeat_interleave(clone_batch, 0)
if mask_seeds is not None:
clone_hash = [
int(hash((mask_seeds.seed, ind)) % 1e10)
for ind in range(clone_batch - 1)
]
clone_hash = torch.tensor([0] + clone_hash).long().view(1, -1)
id = mask_seeds.ids
id = id.repeat_interleave(clone_batch, 0)
id = id.view(-1, clone_batch) + clone_hash.to(id)
id = id.view(-1)
mask_seeds = MaskSeed(
seed=mask_seeds.seed, update=mask_seeds.update, ids=id
)
if padding_mask is not None:
padding_mask = padding_mask.repeat_interleave(clone_batch, 0)
x, mask_info = self.compute_mask(
x,
padding_mask,
mask_seed=mask_seeds,
apply=self.relative_positional_encoder is not None or not remove_masked,
precomputed_mask=precomputed_mask,
)
if self.relative_positional_encoder is not None:
x_pos = self.relative_positional_encoder(x)
masked_padding_mask = padding_mask
if mask and remove_masked:
x = mask_info.x_unmasked
if x_pos is not None:
x = x + gather_unmasked(x_pos, mask_info)
if padding_mask is not None and padding_mask.any():
masked_padding_mask = gather_unmasked_mask(padding_mask, mask_info)
if not masked_padding_mask.any():
masked_padding_mask = None
else:
masked_padding_mask = None
elif x_pos is not None:
x = x + x_pos
alibi_bias = None
alibi_scale = self.alibi_scale
if self.get_alibi_bias is not None:
alibi_bias = self.get_alibi_bias(
batch_size=pre_mask_B,
time_steps=orig_T,
heads=self.modality_cfg.num_alibi_heads,
dtype=torch.float32,
device=x.device,
)
if alibi_scale is not None:
alibi_scale = alibi_scale.clamp_min(0)
if alibi_scale.size(0) == 1:
alibi_bias = alibi_bias * alibi_scale.squeeze(0).type_as(alibi_bias)
alibi_scale = None
if clone_batch > 1:
alibi_bias = alibi_bias.repeat_interleave(clone_batch, 0)
if mask_info is not None and remove_masked:
alibi_bias = masked_alibi(alibi_bias, mask_info)
if self.extra_tokens is not None:
num = self.extra_tokens.size(1)
x = torch.cat([self.extra_tokens.expand(x.size(0), -1, -1), x], dim=1)
if masked_padding_mask is not None:
# B x T
masked_padding_mask = F.pad(masked_padding_mask, (num, 0))
if alibi_bias is not None:
# B x H x T x T
alibi_bias = F.pad(alibi_bias, (num, 0, num, 0))
x = self.context_encoder(
x,
masked_padding_mask,
alibi_bias,
(
alibi_scale[: self.modality_cfg.prenet_depth]
if alibi_scale is not None
else None
),
)
return {
"x": x,
"local_features": local_features,
"padding_mask": masked_padding_mask,
"alibi_bias": alibi_bias,
"alibi_scale": (
alibi_scale[self.modality_cfg.prenet_depth :]
if alibi_scale is not None and alibi_scale.size(0) > 1
else alibi_scale
),
"encoder_mask": mask_info,
}
def forward(
self,
features,
padding_mask,
mask: bool,
remove_masked: bool,
clone_batch: int = 1,
mask_seeds: Optional[torch.Tensor] = None,
precomputed_mask=None,
):
x = self.local_features(features)
return self.contextualized_features(
x,
padding_mask,
mask,
remove_masked,
clone_batch,
mask_seeds,
precomputed_mask,
)
def reset_parameters(self):
pass
def compute_mask(
self,
x,
padding_mask,
mask_seed: Optional[MaskSeed],
apply,
precomputed_mask,
):
if precomputed_mask is not None:
mask = precomputed_mask
mask_info = self.make_maskinfo(x, mask)
else:
B, T, C = x.shape
cfg = self.modality_cfg
mask_prob = cfg.mask_prob
if (
cfg.mask_prob_min is not None
and cfg.mask_prob_min >= 0
and cfg.mask_prob_min < mask_prob
):
mask_prob = np.random.uniform(cfg.mask_prob_min, mask_prob)
if mask_prob > 0:
if cfg.mask_length == 1:
mask_info = random_masking(x, mask_prob, mask_seed)
else:
if self.modality_cfg.inverse_mask:
mask_prob = 1 - mask_prob
mask = compute_mask_indices(
(B, T),
padding_mask,
mask_prob,
cfg.mask_length,
min_masks=1,
require_same_masks=True,
mask_dropout=cfg.mask_dropout,
add_masks=cfg.add_masks,
seed=mask_seed.seed if mask_seed is not None else None,
epoch=mask_seed.update if mask_seed is not None else None,
indices=mask_seed.ids if mask_seed is not None else None,
)
mask = torch.from_numpy(mask).to(device=x.device)
if self.modality_cfg.inverse_mask:
mask = 1 - mask
mask_info = self.make_maskinfo(x, mask)
else:
mask_info = None
if apply:
x = self.apply_mask(x, mask_info)
return x, mask_info
def make_maskinfo(self, x, mask, shape=None):
if shape is None:
B, T, D = x.shape
else:
B, T, D = shape
mask = mask.to(torch.uint8)
ids_shuffle = mask.argsort(dim=1)
ids_restore = ids_shuffle.argsort(dim=1).unsqueeze(-1).expand(-1, -1, D)
len_keep = T - mask[0].sum()
if self.modality_cfg.keep_masked_pct > 0:
len_keep += round((T - int(len_keep)) * self.modality_cfg.keep_masked_pct)
ids_keep = ids_shuffle[:, :len_keep]
if shape is not None:
x_unmasked = None
else:
ids_keep = ids_keep.unsqueeze(-1).expand(-1, -1, D)
x_unmasked = torch.gather(x, dim=1, index=ids_keep)
mask_info = MaskInfo(
x_unmasked=x_unmasked,
mask=mask,
ids_restore=ids_restore,
ids_keep=ids_keep,
)
return mask_info
def apply_mask(self, x, mask_info):
cfg = self.modality_cfg
B, T, C = x.shape
if mask_info is not None:
mask = mask_info.mask
if cfg.encoder_zero_mask:
x = x * (1 - mask.type_as(x).unsqueeze(-1))
else:
num_masks = mask.sum().item()
masks = x.new_empty(num_masks, x.size(-1)).normal_(
0, cfg.mask_noise_std
)
x = index_put(x, mask, masks)
if cfg.mask_channel_prob > 0:
mask_channel = compute_mask_indices(
(B, C),
None,
cfg.mask_channel_prob,
cfg.mask_channel_length,
)
mask_channel = (
torch.from_numpy(mask_channel)
.to(x.device)
.unsqueeze(1)
.expand(-1, T, -1)
)
x = index_put(x, mask_channel, 0)
return x
def remove_pretraining_modules(self, keep_decoder=False):
if not keep_decoder:
self.decoder = None
def get_annealed_rate(start, end, curr_step, total_steps):
if curr_step >= total_steps:
return end
r = end - start
pct_remaining = 1 - curr_step / total_steps
return end - r * pct_remaining
# adapted from MAE
def random_masking(x, mask_ratio, mask_seed: Optional[MaskSeed]):
N, L, D = x.shape # batch, length, dim
len_keep = int(L * (1 - mask_ratio))
generator = None
if mask_seed is not None:
seed = int(
hash((mask_seed.seed, mask_seed.update, mask_seed.ids.sum().item())) % 1e6
)
generator = torch.Generator(device=x.device)
generator.manual_seed(seed)
noise = torch.rand(N, L, generator=generator, device=x.device) # noise in [0, 1]
# sort noise for each sample
ids_shuffle = noise.argsort(dim=1) # ascend: small is keep, large is remove
ids_restore = ids_shuffle.argsort(dim=1)
# keep the first subset
ids_keep = ids_shuffle[:, :len_keep]
ids_keep = ids_keep.unsqueeze(-1).expand(-1, -1, D)
x_unmasked = torch.gather(x, dim=1, index=ids_keep)
# generate the binary mask: 0 is keep, 1 is remove
mask = torch.ones([N, L], dtype=x.dtype, device=x.device)
mask[:, :len_keep] = 0
# unshuffle to get the binary mask
mask = torch.gather(mask, dim=1, index=ids_restore)
ids_restore = ids_restore.unsqueeze(-1).expand(-1, -1, D)
return MaskInfo(
x_unmasked=x_unmasked, mask=mask, ids_restore=ids_restore, ids_keep=ids_keep
)
def gather_unmasked(x: torch.Tensor, mask_info: MaskInfo) -> torch.Tensor:
return torch.gather(
x,
dim=1,
index=mask_info.ids_keep,
)
def gather_unmasked_mask(x: torch.Tensor, mask_info: MaskInfo) -> torch.Tensor:
return torch.gather(
x,
dim=1,
index=mask_info.ids_keep[..., 0], # ignore the feature dimension
)
def get_alibi(
max_positions: int,
attention_heads: int,
dims: int = 1,
distance: str = "manhattan",
):
def get_slopes(n):
def get_slopes_power_of_2(n):
start = 2 ** (-(2 ** -(math.log2(n) - 3)))
ratio = start
return [start * ratio**i for i in range(n)]
# In the paper, we only train models that have 2^a heads for some
# a. This function has some good properties that only occur when
# the input is a power of 2. To maintain that even when the number
# of heads is not a power of 2, we use this workaround.
if math.log2(n).is_integer():
return get_slopes_power_of_2(n)
else:
closest_power_of_2 = 2 ** math.floor(math.log2(n))
return (
get_slopes_power_of_2(closest_power_of_2)
+ get_slopes(2 * closest_power_of_2)[0::2][: n - closest_power_of_2]
)
maxpos = max_positions
attn_heads = attention_heads
slopes = torch.Tensor(get_slopes(attn_heads))
if dims == 1:
# prepare alibi position linear bias. Note that wav2vec2 is non
# autoregressive model so we want a symmetric mask with 0 on the
# diagonal and other wise linear decreasing valuees
pos_bias = (
torch.abs(
torch.arange(maxpos).unsqueeze(0) - torch.arange(maxpos).unsqueeze(1)
)
* -1
)
elif dims == 2:
if distance == "manhattan":
df = lambda x1, y1, x2, y2: abs(x1 - x2) + abs(y1 - y2)
elif distance == "euclidean":
df = lambda x1, y1, x2, y2: math.sqrt((x1 - x2) ** 2 + (y1 - y2) ** 2)
n = math.sqrt(max_positions)
assert n.is_integer(), n
n = int(n)
pos_bias = torch.zeros((max_positions, max_positions))
for i in range(n):
for j in range(n):
for k in range(n):
for l in range(n):
new_x = i * n + j
new_y = k * n + l
pos_bias[new_x, new_y] = -df(i, j, k, l)
else:
raise Exception(f"unsupported number of alibi dims: {dims}")
alibi_bias = slopes.unsqueeze(1).unsqueeze(1) * pos_bias.unsqueeze(0).expand(
attn_heads, -1, -1
)
return alibi_bias
def get_alibi_bias(
alibi_biases,
batch_size,
time_steps,
heads,
dtype,
device,
dims=1,
distance="manhattan",
):
cache_key = f"{dims}_{heads}_{distance}"
buffered = alibi_biases.get(cache_key, None)
target_size = heads * batch_size
if (
buffered is None
or buffered.size(0) < target_size
or buffered.size(1) < time_steps
or buffered.dtype != dtype
or buffered.device != device
):
bt = max(time_steps, buffered.size(1) if buffered is not None else 0)
bn = max(target_size, buffered.size(0) if buffered is not None else 0) // heads
buffered = (
get_alibi(bt, heads, dims=dims, distance=distance)
.to(dtype=dtype, device=device)
.repeat(bn, 1, 1)
)
alibi_biases[cache_key] = buffered
b = buffered[:target_size, :time_steps, :time_steps]
b = b.view(batch_size, heads, time_steps, time_steps)
return b
def _learned_alibi_bias(
alibi_bias,
batch_size,
time_steps,
heads,
scale,
dtype,
device,
):
assert alibi_bias.size(1) == heads, alibi_bias.shape
assert alibi_bias.dtype == dtype, alibi_bias.dtype
assert alibi_bias.device == device, alibi_bias.device
if alibi_bias.size(-1) < time_steps:
psz = math.ceil((time_steps - alibi_bias.size(-1)) / 2)
alibi_bias = F.pad(alibi_bias, (psz, psz, psz, psz), mode="replicate")
alibi_bias = alibi_bias.expand(batch_size, -1, -1, -1) * scale
return alibi_bias[..., :time_steps, :time_steps]
def masked_alibi(alibi_bias, mask_info):
H = alibi_bias.size(1)
orig_bias = alibi_bias
index = mask_info.ids_keep.unsqueeze(1)[..., 0].unsqueeze(-1)
alibi_bias = torch.gather(
orig_bias,
dim=-2,
index=index.expand(-1, H, -1, mask_info.ids_restore.size(1)),
)
alibi_bias = torch.gather(
alibi_bias,
dim=-1,
index=index.transpose(-1, -2).expand(-1, H, alibi_bias.size(-2), -1),
)
return alibi_bias
|