Spaces:
Running
Running
File size: 9,351 Bytes
67c46fd |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 |
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
import torch
import numpy as np
import torch.nn as nn
from enum import Enum, auto
import torch.nn.functional as F
from dataclasses import dataclass
from funasr_detach.models.emotion2vec.fairseq_modules import (
LayerNorm,
SamePad,
TransposeLast,
)
class Modality(Enum):
AUDIO = auto()
@dataclass
class D2vDecoderConfig:
decoder_dim: int = 384
decoder_groups: int = 16
decoder_kernel: int = 5
decoder_layers: int = 5
input_dropout: float = 0.1
add_positions_masked: bool = False
add_positions_all: bool = False
decoder_residual: bool = True
projection_layers: int = 1
projection_ratio: float = 2.0
class FixedPositionalEncoder(nn.Module):
def __init__(self, pos_embed):
super().__init__()
self.positions = pos_embed
def forward(self, x, padding_mask):
return self.positions
class TextFeatPositionalEncoder(nn.Module):
"""
Original encoder expects (B, T) long input. This module wraps it to take
local_encoder output which are (B, T, D) float tensors
"""
def __init__(self, pos_encoder):
super().__init__()
self.pos_encoder = pos_encoder
def forward(self, x, padding_mask):
# assume padded token embeddings are 0s
# TODO: consider using padding_mask as input
return self.pos_encoder(x[..., 0])
class BlockEncoder(nn.Module):
def __init__(self, blocks, norm_layer, layer_norm_first, layerdrop, dropout):
super().__init__()
self.blocks = blocks
self.norm = norm_layer
self.layer_norm_first = layer_norm_first
self.layerdrop = layerdrop
self.dropout = nn.Dropout(dropout, inplace=True)
def forward(self, x, padding_mask, alibi_bias, alibi_scale):
if self.norm is not None and not self.layer_norm_first:
x = self.norm(x)
x = self.dropout(x)
for i, blk in enumerate(self.blocks):
if (
not self.training
or self.layerdrop == 0
or (np.random.random() > self.layerdrop)
):
ab = alibi_bias
if ab is not None and alibi_scale is not None:
scale = (
alibi_scale[i]
if alibi_scale.size(0) > 1
else alibi_scale.squeeze(0)
)
ab = ab * scale.type_as(ab)
x, _ = blk(x, padding_mask, ab)
if self.norm is not None and self.layer_norm_first:
x = self.norm(x)
return x
class DecoderBase(nn.Module):
decoder_cfg: D2vDecoderConfig
def __init__(self, cfg: D2vDecoderConfig):
super().__init__()
self.decoder_cfg = cfg
def reset_parameters(self):
for mod in self.proj.modules():
if isinstance(mod, nn.Linear):
mod.reset_parameters()
def add_residual(self, x, residual, i, mask_info):
if (
residual is None
or not self.decoder_cfg.decoder_residual
or residual.size(1) != x.size(1)
):
return x
ret = x + residual
return ret
class Decoder1d(DecoderBase):
def __init__(self, cfg: D2vDecoderConfig, input_dim):
super().__init__(cfg)
def make_block(in_dim):
block = [
nn.Conv1d(
in_dim,
cfg.decoder_dim,
kernel_size=cfg.decoder_kernel,
padding=cfg.decoder_kernel // 2,
groups=cfg.decoder_groups,
),
SamePad(cfg.decoder_kernel),
TransposeLast(),
LayerNorm(cfg.decoder_dim, elementwise_affine=False),
TransposeLast(),
nn.GELU(),
]
return nn.Sequential(*block)
self.blocks = nn.Sequential(
*[
make_block(input_dim if i == 0 else cfg.decoder_dim)
for i in range(cfg.decoder_layers)
]
)
projs = []
curr_dim = cfg.decoder_dim
for i in range(cfg.projection_layers - 1):
next_dim = int(curr_dim * cfg.projection_ratio) if i == 0 else curr_dim
projs.append(nn.Linear(curr_dim, next_dim))
projs.append(nn.GELU())
curr_dim = next_dim
projs.append(nn.Linear(curr_dim, input_dim))
if len(projs) == 1:
self.proj = projs[0]
else:
self.proj = nn.Sequential(*projs)
def forward(self, x, mask_info):
x = x.transpose(1, 2)
residual = x
for i, layer in enumerate(self.blocks):
x = layer(x)
x = self.add_residual(x, residual, i, mask_info)
residual = x
x = x.transpose(1, 2)
x = self.proj(x)
return x
class AltBlock(nn.Module):
def __init__(
self,
dim,
num_heads,
mlp_ratio=4.0,
qkv_bias=False,
qk_scale=None,
drop=0.0,
attn_drop=0.0,
mlp_drop=0.0,
post_mlp_drop=0.0,
drop_path=0.0,
act_layer=nn.GELU,
norm_layer=nn.LayerNorm,
layer_norm_first=True,
ffn_targets=False,
cosine_attention=False,
):
super().__init__()
self.layer_norm_first = layer_norm_first
self.ffn_targets = ffn_targets
from funasr_detach.models.emotion2vec.timm_modules import DropPath, Mlp
self.norm1 = norm_layer(dim)
self.attn = AltAttention(
dim,
num_heads=num_heads,
qkv_bias=qkv_bias,
qk_scale=qk_scale,
attn_drop=attn_drop,
proj_drop=drop,
cosine_attention=cosine_attention,
)
self.drop_path = DropPath(drop_path) if drop_path > 0.0 else nn.Identity()
self.norm2 = norm_layer(dim)
mlp_hidden_dim = int(dim * mlp_ratio)
self.mlp = Mlp(
in_features=dim,
hidden_features=mlp_hidden_dim,
act_layer=act_layer,
drop=mlp_drop,
)
self.post_mlp_dropout = nn.Dropout(post_mlp_drop, inplace=False)
def forward(self, x, padding_mask=None, alibi_bias=None):
if self.layer_norm_first:
x = x + self.drop_path(self.attn(self.norm1(x), padding_mask, alibi_bias))
r = x = self.mlp(self.norm2(x))
t = x
x = r + self.drop_path(self.post_mlp_dropout(x))
if not self.ffn_targets:
t = x
else:
x = x + self.drop_path(self.attn(x, padding_mask, alibi_bias))
r = x = self.norm1(x)
x = self.mlp(x)
t = x
x = self.norm2(r + self.drop_path(self.post_mlp_dropout(x)))
if not self.ffn_targets:
t = x
return x, t
class AltAttention(nn.Module):
def __init__(
self,
dim,
num_heads=8,
qkv_bias=False,
qk_scale=None,
attn_drop=0.0,
proj_drop=0.0,
cosine_attention=False,
):
super().__init__()
self.num_heads = num_heads
head_dim = dim // num_heads
self.scale = qk_scale or head_dim**-0.5
self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
self.attn_drop = nn.Dropout(attn_drop)
self.proj = nn.Linear(dim, dim)
self.proj_drop = nn.Dropout(proj_drop)
self.cosine_attention = cosine_attention
if cosine_attention:
self.logit_scale = nn.Parameter(
torch.log(10 * torch.ones((num_heads, 1, 1))), requires_grad=True
)
def forward(self, x, padding_mask=None, alibi_bias=None):
B, N, C = x.shape
qkv = (
self.qkv(x)
.reshape(B, N, 3, self.num_heads, C // self.num_heads)
.permute(2, 0, 3, 1, 4) # qkv x B x H x L x D
)
q, k, v = (
qkv[0],
qkv[1],
qkv[2],
) # make torchscript happy (cannot use tensor as tuple)
dtype = q.dtype
if self.cosine_attention:
# cosine attention
attn = F.normalize(q, dim=-1) @ F.normalize(k, dim=-1).transpose(-2, -1)
logit_scale = torch.clamp(
self.logit_scale, max=torch.log(torch.tensor(1.0 / 0.01))
).exp()
attn = attn * logit_scale
else:
q = q * self.scale
attn = q @ k.transpose(-2, -1)
if alibi_bias is not None:
attn = attn.type_as(alibi_bias)
attn[:, : alibi_bias.size(1)] += alibi_bias
if padding_mask is not None and padding_mask.any():
attn = attn.masked_fill(
padding_mask.unsqueeze(1).unsqueeze(2).to(torch.bool),
float("-inf"),
)
attn = attn.softmax(dim=-1, dtype=torch.float32).to(dtype=dtype)
attn = self.attn_drop(attn)
x = (attn @ v).transpose(1, 2) #
x = x.reshape(B, N, C)
x = self.proj(x)
x = self.proj_drop(x)
return x
|