File size: 18,671 Bytes
67c46fd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
# Copyright 2019 Shigeki Karita
#  Apache 2.0  (http://www.apache.org/licenses/LICENSE-2.0)

"""Transformer encoder definition."""

from typing import List
from typing import Optional
from typing import Tuple

import torch
from torch import nn
import logging

from funasr_detach.models.transformer.attention import MultiHeadedAttention
from funasr_detach.models.transformer.embedding import PositionalEncoding
from funasr_detach.models.transformer.layer_norm import LayerNorm
from funasr_detach.models.transformer.utils.multi_layer_conv import Conv1dLinear
from funasr_detach.models.transformer.utils.multi_layer_conv import MultiLayeredConv1d
from funasr_detach.models.transformer.utils.nets_utils import make_pad_mask
from funasr_detach.models.transformer.positionwise_feed_forward import (
    PositionwiseFeedForward,  # noqa: H301
)
from funasr_detach.models.transformer.utils.repeat import repeat
from funasr_detach.models.transformer.utils.dynamic_conv import DynamicConvolution
from funasr_detach.models.transformer.utils.dynamic_conv2d import DynamicConvolution2D
from funasr_detach.models.transformer.utils.lightconv import LightweightConvolution
from funasr_detach.models.transformer.utils.lightconv2d import LightweightConvolution2D
from funasr_detach.models.transformer.utils.subsampling import Conv2dSubsampling
from funasr_detach.models.transformer.utils.subsampling import Conv2dSubsampling2
from funasr_detach.models.transformer.utils.subsampling import Conv2dSubsampling6
from funasr_detach.models.transformer.utils.subsampling import Conv2dSubsampling8
from funasr_detach.models.transformer.utils.subsampling import TooShortUttError
from funasr_detach.models.transformer.utils.subsampling import check_short_utt


class EncoderLayer(nn.Module):
    """Encoder layer module.

    Args:
        size (int): Input dimension.
        self_attn (torch.nn.Module): Self-attention module instance.
            `MultiHeadedAttention` or `RelPositionMultiHeadedAttention` instance
            can be used as the argument.
        feed_forward (torch.nn.Module): Feed-forward module instance.
            `PositionwiseFeedForward`, `MultiLayeredConv1d`, or `Conv1dLinear` instance
            can be used as the argument.
        dropout_rate (float): Dropout rate.
        normalize_before (bool): Whether to use layer_norm before the first block.
        concat_after (bool): Whether to concat attention layer's input and output.
            if True, additional linear will be applied.
            i.e. x -> x + linear(concat(x, att(x)))
            if False, no additional linear will be applied. i.e. x -> x + att(x)
        stochastic_depth_rate (float): Proability to skip this layer.
            During training, the layer may skip residual computation and return input
            as-is with given probability.
    """

    def __init__(
        self,
        size,
        self_attn,
        feed_forward,
        dropout_rate,
        normalize_before=True,
        concat_after=False,
        stochastic_depth_rate=0.0,
    ):
        """Construct an EncoderLayer object."""
        super(EncoderLayer, self).__init__()
        self.self_attn = self_attn
        self.feed_forward = feed_forward
        self.norm1 = LayerNorm(size)
        self.norm2 = LayerNorm(size)
        self.dropout = nn.Dropout(dropout_rate)
        self.size = size
        self.normalize_before = normalize_before
        self.concat_after = concat_after
        if self.concat_after:
            self.concat_linear = nn.Linear(size + size, size)
        self.stochastic_depth_rate = stochastic_depth_rate

    def forward(self, x, mask, cache=None):
        """Compute encoded features.

        Args:
            x_input (torch.Tensor): Input tensor (#batch, time, size).
            mask (torch.Tensor): Mask tensor for the input (#batch, time).
            cache (torch.Tensor): Cache tensor of the input (#batch, time - 1, size).

        Returns:
            torch.Tensor: Output tensor (#batch, time, size).
            torch.Tensor: Mask tensor (#batch, time).

        """
        skip_layer = False
        # with stochastic depth, residual connection `x + f(x)` becomes
        # `x <- x + 1 / (1 - p) * f(x)` at training time.
        stoch_layer_coeff = 1.0
        if self.training and self.stochastic_depth_rate > 0:
            skip_layer = torch.rand(1).item() < self.stochastic_depth_rate
            stoch_layer_coeff = 1.0 / (1 - self.stochastic_depth_rate)

        if skip_layer:
            if cache is not None:
                x = torch.cat([cache, x], dim=1)
            return x, mask

        residual = x
        if self.normalize_before:
            x = self.norm1(x)

        if cache is None:
            x_q = x
        else:
            assert cache.shape == (x.shape[0], x.shape[1] - 1, self.size)
            x_q = x[:, -1:, :]
            residual = residual[:, -1:, :]
            mask = None if mask is None else mask[:, -1:, :]

        if self.concat_after:
            x_concat = torch.cat((x, self.self_attn(x_q, x, x, mask)), dim=-1)
            x = residual + stoch_layer_coeff * self.concat_linear(x_concat)
        else:
            x = residual + stoch_layer_coeff * self.dropout(
                self.self_attn(x_q, x, x, mask)
            )
        if not self.normalize_before:
            x = self.norm1(x)

        residual = x
        if self.normalize_before:
            x = self.norm2(x)
        x = residual + stoch_layer_coeff * self.dropout(self.feed_forward(x))
        if not self.normalize_before:
            x = self.norm2(x)

        if cache is not None:
            x = torch.cat([cache, x], dim=1)

        return x, mask


class TransformerEncoder_lm(nn.Module):
    """Transformer encoder module.

    Args:
        idim (int): Input dimension.
        attention_dim (int): Dimension of attention.
        attention_heads (int): The number of heads of multi head attention.
        conv_wshare (int): The number of kernel of convolution. Only used in
            selfattention_layer_type == "lightconv*" or "dynamiconv*".
        conv_kernel_length (Union[int, str]): Kernel size str of convolution
            (e.g. 71_71_71_71_71_71). Only used in selfattention_layer_type
            == "lightconv*" or "dynamiconv*".
        conv_usebias (bool): Whether to use bias in convolution. Only used in
            selfattention_layer_type == "lightconv*" or "dynamiconv*".
        linear_units (int): The number of units of position-wise feed forward.
        num_blocks (int): The number of decoder blocks.
        dropout_rate (float): Dropout rate.
        positional_dropout_rate (float): Dropout rate after adding positional encoding.
        attention_dropout_rate (float): Dropout rate in attention.
        input_layer (Union[str, torch.nn.Module]): Input layer type.
        pos_enc_class (torch.nn.Module): Positional encoding module class.
            `PositionalEncoding `or `ScaledPositionalEncoding`
        normalize_before (bool): Whether to use layer_norm before the first block.
        concat_after (bool): Whether to concat attention layer's input and output.
            if True, additional linear will be applied.
            i.e. x -> x + linear(concat(x, att(x)))
            if False, no additional linear will be applied. i.e. x -> x + att(x)
        positionwise_layer_type (str): "linear", "conv1d", or "conv1d-linear".
        positionwise_conv_kernel_size (int): Kernel size of positionwise conv1d layer.
        selfattention_layer_type (str): Encoder attention layer type.
        padding_idx (int): Padding idx for input_layer=embed.
        stochastic_depth_rate (float): Maximum probability to skip the encoder layer.
        intermediate_layers (Union[List[int], None]): indices of intermediate CTC layer.
            indices start from 1.
            if not None, intermediate outputs are returned (which changes return type
            signature.)

    """

    def __init__(
        self,
        idim,
        attention_dim=256,
        attention_heads=4,
        conv_wshare=4,
        conv_kernel_length="11",
        conv_usebias=False,
        linear_units=2048,
        num_blocks=6,
        dropout_rate=0.1,
        positional_dropout_rate=0.1,
        attention_dropout_rate=0.0,
        input_layer="conv2d",
        pos_enc_class=PositionalEncoding,
        normalize_before=True,
        concat_after=False,
        positionwise_layer_type="linear",
        positionwise_conv_kernel_size=1,
        selfattention_layer_type="selfattn",
        padding_idx=-1,
        stochastic_depth_rate=0.0,
        intermediate_layers=None,
        ctc_softmax=None,
        conditioning_layer_dim=None,
    ):
        """Construct an Encoder object."""
        super().__init__()

        self.conv_subsampling_factor = 1
        if input_layer == "linear":
            self.embed = torch.nn.Sequential(
                torch.nn.Linear(idim, attention_dim),
                torch.nn.LayerNorm(attention_dim),
                torch.nn.Dropout(dropout_rate),
                torch.nn.ReLU(),
                pos_enc_class(attention_dim, positional_dropout_rate),
            )
        elif input_layer == "conv2d":
            self.embed = Conv2dSubsampling(idim, attention_dim, dropout_rate)
            self.conv_subsampling_factor = 4
        elif input_layer == "conv2d-scaled-pos-enc":
            self.embed = Conv2dSubsampling(
                idim,
                attention_dim,
                dropout_rate,
                pos_enc_class(attention_dim, positional_dropout_rate),
            )
            self.conv_subsampling_factor = 4
        elif input_layer == "conv2d6":
            self.embed = Conv2dSubsampling6(idim, attention_dim, dropout_rate)
            self.conv_subsampling_factor = 6
        elif input_layer == "conv2d8":
            self.embed = Conv2dSubsampling8(idim, attention_dim, dropout_rate)
            self.conv_subsampling_factor = 8
        elif input_layer == "embed":
            self.embed = torch.nn.Sequential(
                torch.nn.Embedding(idim, attention_dim, padding_idx=padding_idx),
                pos_enc_class(attention_dim, positional_dropout_rate),
            )
        elif isinstance(input_layer, torch.nn.Module):
            self.embed = torch.nn.Sequential(
                input_layer,
                pos_enc_class(attention_dim, positional_dropout_rate),
            )
        elif input_layer is None:
            self.embed = torch.nn.Sequential(
                pos_enc_class(attention_dim, positional_dropout_rate)
            )
        else:
            raise ValueError("unknown input_layer: " + input_layer)
        self.normalize_before = normalize_before
        positionwise_layer, positionwise_layer_args = self.get_positionwise_layer(
            positionwise_layer_type,
            attention_dim,
            linear_units,
            dropout_rate,
            positionwise_conv_kernel_size,
        )
        if selfattention_layer_type in [
            "selfattn",
            "rel_selfattn",
            "legacy_rel_selfattn",
        ]:
            logging.info("encoder self-attention layer type = self-attention")
            encoder_selfattn_layer = MultiHeadedAttention
            encoder_selfattn_layer_args = [
                (
                    attention_heads,
                    attention_dim,
                    attention_dropout_rate,
                )
            ] * num_blocks
        elif selfattention_layer_type == "lightconv":
            logging.info("encoder self-attention layer type = lightweight convolution")
            encoder_selfattn_layer = LightweightConvolution
            encoder_selfattn_layer_args = [
                (
                    conv_wshare,
                    attention_dim,
                    attention_dropout_rate,
                    int(conv_kernel_length.split("_")[lnum]),
                    False,
                    conv_usebias,
                )
                for lnum in range(num_blocks)
            ]
        elif selfattention_layer_type == "lightconv2d":
            logging.info(
                "encoder self-attention layer "
                "type = lightweight convolution 2-dimensional"
            )
            encoder_selfattn_layer = LightweightConvolution2D
            encoder_selfattn_layer_args = [
                (
                    conv_wshare,
                    attention_dim,
                    attention_dropout_rate,
                    int(conv_kernel_length.split("_")[lnum]),
                    False,
                    conv_usebias,
                )
                for lnum in range(num_blocks)
            ]
        elif selfattention_layer_type == "dynamicconv":
            logging.info("encoder self-attention layer type = dynamic convolution")
            encoder_selfattn_layer = DynamicConvolution
            encoder_selfattn_layer_args = [
                (
                    conv_wshare,
                    attention_dim,
                    attention_dropout_rate,
                    int(conv_kernel_length.split("_")[lnum]),
                    False,
                    conv_usebias,
                )
                for lnum in range(num_blocks)
            ]
        elif selfattention_layer_type == "dynamicconv2d":
            logging.info(
                "encoder self-attention layer type = dynamic convolution 2-dimensional"
            )
            encoder_selfattn_layer = DynamicConvolution2D
            encoder_selfattn_layer_args = [
                (
                    conv_wshare,
                    attention_dim,
                    attention_dropout_rate,
                    int(conv_kernel_length.split("_")[lnum]),
                    False,
                    conv_usebias,
                )
                for lnum in range(num_blocks)
            ]
        else:
            raise NotImplementedError(selfattention_layer_type)

        self.encoders = repeat(
            num_blocks,
            lambda lnum: EncoderLayer(
                attention_dim,
                encoder_selfattn_layer(*encoder_selfattn_layer_args[lnum]),
                positionwise_layer(*positionwise_layer_args),
                dropout_rate,
                normalize_before,
                concat_after,
                stochastic_depth_rate * float(1 + lnum) / num_blocks,
            ),
        )
        if self.normalize_before:
            self.after_norm = LayerNorm(attention_dim)

        self.intermediate_layers = intermediate_layers
        self.use_conditioning = True if ctc_softmax is not None else False
        if self.use_conditioning:
            self.ctc_softmax = ctc_softmax
            self.conditioning_layer = torch.nn.Linear(
                conditioning_layer_dim, attention_dim
            )

    def get_positionwise_layer(
        self,
        positionwise_layer_type="linear",
        attention_dim=256,
        linear_units=2048,
        dropout_rate=0.1,
        positionwise_conv_kernel_size=1,
    ):
        """Define positionwise layer."""
        if positionwise_layer_type == "linear":
            positionwise_layer = PositionwiseFeedForward
            positionwise_layer_args = (attention_dim, linear_units, dropout_rate)
        elif positionwise_layer_type == "conv1d":
            positionwise_layer = MultiLayeredConv1d
            positionwise_layer_args = (
                attention_dim,
                linear_units,
                positionwise_conv_kernel_size,
                dropout_rate,
            )
        elif positionwise_layer_type == "conv1d-linear":
            positionwise_layer = Conv1dLinear
            positionwise_layer_args = (
                attention_dim,
                linear_units,
                positionwise_conv_kernel_size,
                dropout_rate,
            )
        else:
            raise NotImplementedError("Support only linear or conv1d.")
        return positionwise_layer, positionwise_layer_args

    def forward(self, xs, masks):
        """Encode input sequence.

        Args:
            xs (torch.Tensor): Input tensor (#batch, time, idim).
            masks (torch.Tensor): Mask tensor (#batch, time).

        Returns:
            torch.Tensor: Output tensor (#batch, time, attention_dim).
            torch.Tensor: Mask tensor (#batch, time).

        """
        if isinstance(
            self.embed,
            (Conv2dSubsampling, Conv2dSubsampling6, Conv2dSubsampling8),
        ):
            xs, masks = self.embed(xs, masks)
        else:
            xs = self.embed(xs)

        if self.intermediate_layers is None:
            xs, masks = self.encoders(xs, masks)
        else:
            intermediate_outputs = []
            for layer_idx, encoder_layer in enumerate(self.encoders):
                xs, masks = encoder_layer(xs, masks)

                if (
                    self.intermediate_layers is not None
                    and layer_idx + 1 in self.intermediate_layers
                ):
                    encoder_output = xs
                    # intermediate branches also require normalization.
                    if self.normalize_before:
                        encoder_output = self.after_norm(encoder_output)
                    intermediate_outputs.append(encoder_output)

                    if self.use_conditioning:
                        intermediate_result = self.ctc_softmax(encoder_output)
                        xs = xs + self.conditioning_layer(intermediate_result)

        if self.normalize_before:
            xs = self.after_norm(xs)

        if self.intermediate_layers is not None:
            return xs, masks, intermediate_outputs
        return xs, masks

    def forward_one_step(self, xs, masks, cache=None):
        """Encode input frame.

        Args:
            xs (torch.Tensor): Input tensor.
            masks (torch.Tensor): Mask tensor.
            cache (List[torch.Tensor]): List of cache tensors.

        Returns:
            torch.Tensor: Output tensor.
            torch.Tensor: Mask tensor.
            List[torch.Tensor]: List of new cache tensors.

        """
        if isinstance(self.embed, Conv2dSubsampling):
            xs, masks = self.embed(xs, masks)
        else:
            xs = self.embed(xs)
        if cache is None:
            cache = [None for _ in range(len(self.encoders))]
        new_cache = []
        for c, e in zip(cache, self.encoders):
            xs, masks = e(xs, masks, cache=c)
            new_cache.append(xs)
        if self.normalize_before:
            xs = self.after_norm(xs)
        return xs, masks, new_cache