File size: 24,863 Bytes
67c46fd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
#!/usr/bin/env python3
# -*- encoding: utf-8 -*-
# Copyright FunASR (https://github.com/alibaba-damo-academy/FunASR). All Rights Reserved.
#  MIT License  (https://opensource.org/licenses/MIT)

import torch
import logging
import numpy as np

from funasr_detach.register import tables
from funasr_detach.train_utils.device_funcs import to_device
from funasr_detach.models.transformer.utils.nets_utils import make_pad_mask


@tables.register("predictor_classes", "CifPredictor")
class CifPredictor(torch.nn.Module):
    def __init__(

        self,

        idim,

        l_order,

        r_order,

        threshold=1.0,

        dropout=0.1,

        smooth_factor=1.0,

        noise_threshold=0,

        tail_threshold=0.45,

    ):
        super().__init__()

        self.pad = torch.nn.ConstantPad1d((l_order, r_order), 0)
        self.cif_conv1d = torch.nn.Conv1d(
            idim, idim, l_order + r_order + 1, groups=idim
        )
        self.cif_output = torch.nn.Linear(idim, 1)
        self.dropout = torch.nn.Dropout(p=dropout)
        self.threshold = threshold
        self.smooth_factor = smooth_factor
        self.noise_threshold = noise_threshold
        self.tail_threshold = tail_threshold

    def forward(

        self,

        hidden,

        target_label=None,

        mask=None,

        ignore_id=-1,

        mask_chunk_predictor=None,

        target_label_length=None,

    ):
        h = hidden
        context = h.transpose(1, 2)
        queries = self.pad(context)
        memory = self.cif_conv1d(queries)
        output = memory + context
        output = self.dropout(output)
        output = output.transpose(1, 2)
        output = torch.relu(output)
        output = self.cif_output(output)
        alphas = torch.sigmoid(output)
        alphas = torch.nn.functional.relu(
            alphas * self.smooth_factor - self.noise_threshold
        )
        if mask is not None:
            mask = mask.transpose(-1, -2).float()
            alphas = alphas * mask
        if mask_chunk_predictor is not None:
            alphas = alphas * mask_chunk_predictor
        alphas = alphas.squeeze(-1)
        mask = mask.squeeze(-1)
        if target_label_length is not None:
            target_length = target_label_length
        elif target_label is not None:
            target_length = (target_label != ignore_id).float().sum(-1)
        else:
            target_length = None
        token_num = alphas.sum(-1)
        if target_length is not None:
            alphas *= (target_length / token_num)[:, None].repeat(1, alphas.size(1))
        elif self.tail_threshold > 0.0:
            hidden, alphas, token_num = self.tail_process_fn(
                hidden, alphas, token_num, mask=mask
            )

        acoustic_embeds, cif_peak = cif(hidden, alphas, self.threshold)

        if target_length is None and self.tail_threshold > 0.0:
            token_num_int = torch.max(token_num).type(torch.int32).item()
            acoustic_embeds = acoustic_embeds[:, :token_num_int, :]

        return acoustic_embeds, token_num, alphas, cif_peak

    def tail_process_fn(self, hidden, alphas, token_num=None, mask=None):
        b, t, d = hidden.size()
        tail_threshold = self.tail_threshold
        if mask is not None:
            zeros_t = torch.zeros((b, 1), dtype=torch.float32, device=alphas.device)
            ones_t = torch.ones_like(zeros_t)
            mask_1 = torch.cat([mask, zeros_t], dim=1)
            mask_2 = torch.cat([ones_t, mask], dim=1)
            mask = mask_2 - mask_1
            tail_threshold = mask * tail_threshold
            alphas = torch.cat([alphas, zeros_t], dim=1)
            alphas = torch.add(alphas, tail_threshold)
        else:
            tail_threshold = torch.tensor([tail_threshold], dtype=alphas.dtype).to(
                alphas.device
            )
            tail_threshold = torch.reshape(tail_threshold, (1, 1))
            alphas = torch.cat([alphas, tail_threshold], dim=1)
        zeros = torch.zeros((b, 1, d), dtype=hidden.dtype).to(hidden.device)
        hidden = torch.cat([hidden, zeros], dim=1)
        token_num = alphas.sum(dim=-1)
        token_num_floor = torch.floor(token_num)

        return hidden, alphas, token_num_floor

    def gen_frame_alignments(

        self, alphas: torch.Tensor = None, encoder_sequence_length: torch.Tensor = None

    ):
        batch_size, maximum_length = alphas.size()
        int_type = torch.int32

        is_training = self.training
        if is_training:
            token_num = torch.round(torch.sum(alphas, dim=1)).type(int_type)
        else:
            token_num = torch.floor(torch.sum(alphas, dim=1)).type(int_type)

        max_token_num = torch.max(token_num).item()

        alphas_cumsum = torch.cumsum(alphas, dim=1)
        alphas_cumsum = torch.floor(alphas_cumsum).type(int_type)
        alphas_cumsum = alphas_cumsum[:, None, :].repeat(1, max_token_num, 1)

        index = torch.ones([batch_size, max_token_num], dtype=int_type)
        index = torch.cumsum(index, dim=1)
        index = index[:, :, None].repeat(1, 1, maximum_length).to(alphas_cumsum.device)

        index_div = torch.floor(torch.true_divide(alphas_cumsum, index)).type(int_type)
        index_div_bool_zeros = index_div.eq(0)
        index_div_bool_zeros_count = torch.sum(index_div_bool_zeros, dim=-1) + 1
        index_div_bool_zeros_count = torch.clamp(
            index_div_bool_zeros_count, 0, encoder_sequence_length.max()
        )
        token_num_mask = (~make_pad_mask(token_num, maxlen=max_token_num)).to(
            token_num.device
        )
        index_div_bool_zeros_count *= token_num_mask

        index_div_bool_zeros_count_tile = index_div_bool_zeros_count[:, :, None].repeat(
            1, 1, maximum_length
        )
        ones = torch.ones_like(index_div_bool_zeros_count_tile)
        zeros = torch.zeros_like(index_div_bool_zeros_count_tile)
        ones = torch.cumsum(ones, dim=2)
        cond = index_div_bool_zeros_count_tile == ones
        index_div_bool_zeros_count_tile = torch.where(cond, zeros, ones)

        index_div_bool_zeros_count_tile_bool = index_div_bool_zeros_count_tile.type(
            torch.bool
        )
        index_div_bool_zeros_count_tile = 1 - index_div_bool_zeros_count_tile_bool.type(
            int_type
        )
        index_div_bool_zeros_count_tile_out = torch.sum(
            index_div_bool_zeros_count_tile, dim=1
        )
        index_div_bool_zeros_count_tile_out = index_div_bool_zeros_count_tile_out.type(
            int_type
        )
        predictor_mask = (
            (
                ~make_pad_mask(
                    encoder_sequence_length, maxlen=encoder_sequence_length.max()
                )
            )
            .type(int_type)
            .to(encoder_sequence_length.device)
        )
        index_div_bool_zeros_count_tile_out = (
            index_div_bool_zeros_count_tile_out * predictor_mask
        )

        predictor_alignments = index_div_bool_zeros_count_tile_out
        predictor_alignments_length = predictor_alignments.sum(-1).type(
            encoder_sequence_length.dtype
        )
        return predictor_alignments.detach(), predictor_alignments_length.detach()


@tables.register("predictor_classes", "CifPredictorV2")
class CifPredictorV2(torch.nn.Module):
    def __init__(

        self,

        idim,

        l_order,

        r_order,

        threshold=1.0,

        dropout=0.1,

        smooth_factor=1.0,

        noise_threshold=0,

        tail_threshold=0.0,

        tf2torch_tensor_name_prefix_torch="predictor",

        tf2torch_tensor_name_prefix_tf="seq2seq/cif",

        tail_mask=True,

    ):
        super(CifPredictorV2, self).__init__()

        self.pad = torch.nn.ConstantPad1d((l_order, r_order), 0)
        self.cif_conv1d = torch.nn.Conv1d(idim, idim, l_order + r_order + 1)
        self.cif_output = torch.nn.Linear(idim, 1)
        self.dropout = torch.nn.Dropout(p=dropout)
        self.threshold = threshold
        self.smooth_factor = smooth_factor
        self.noise_threshold = noise_threshold
        self.tail_threshold = tail_threshold
        self.tf2torch_tensor_name_prefix_torch = tf2torch_tensor_name_prefix_torch
        self.tf2torch_tensor_name_prefix_tf = tf2torch_tensor_name_prefix_tf
        self.tail_mask = tail_mask

    def forward(

        self,

        hidden,

        target_label=None,

        mask=None,

        ignore_id=-1,

        mask_chunk_predictor=None,

        target_label_length=None,

    ):
        h = hidden
        context = h.transpose(1, 2)
        queries = self.pad(context)
        output = torch.relu(self.cif_conv1d(queries))
        output = output.transpose(1, 2)

        output = self.cif_output(output)
        alphas = torch.sigmoid(output)
        alphas = torch.nn.functional.relu(
            alphas * self.smooth_factor - self.noise_threshold
        )
        if mask is not None:
            mask = mask.transpose(-1, -2).float()
            alphas = alphas * mask
        if mask_chunk_predictor is not None:
            alphas = alphas * mask_chunk_predictor
        alphas = alphas.squeeze(-1)
        mask = mask.squeeze(-1)
        if target_label_length is not None:
            target_length = target_label_length.squeeze(-1)
        elif target_label is not None:
            target_length = (target_label != ignore_id).float().sum(-1)
        else:
            target_length = None
        token_num = alphas.sum(-1)
        if target_length is not None:
            alphas *= (target_length / token_num)[:, None].repeat(1, alphas.size(1))
        elif self.tail_threshold > 0.0:
            if self.tail_mask:
                hidden, alphas, token_num = self.tail_process_fn(
                    hidden, alphas, token_num, mask=mask
                )
            else:
                hidden, alphas, token_num = self.tail_process_fn(
                    hidden, alphas, token_num, mask=None
                )

        acoustic_embeds, cif_peak = cif(hidden, alphas, self.threshold)
        if target_length is None and self.tail_threshold > 0.0:
            token_num_int = torch.max(token_num).type(torch.int32).item()
            acoustic_embeds = acoustic_embeds[:, :token_num_int, :]

        return acoustic_embeds, token_num, alphas, cif_peak

    def forward_chunk(self, hidden, cache=None, **kwargs):
        is_final = kwargs.get("is_final", False)
        batch_size, len_time, hidden_size = hidden.shape
        h = hidden
        context = h.transpose(1, 2)
        queries = self.pad(context)
        output = torch.relu(self.cif_conv1d(queries))
        output = output.transpose(1, 2)
        output = self.cif_output(output)
        alphas = torch.sigmoid(output)
        alphas = torch.nn.functional.relu(
            alphas * self.smooth_factor - self.noise_threshold
        )

        alphas = alphas.squeeze(-1)

        token_length = []
        list_fires = []
        list_frames = []
        cache_alphas = []
        cache_hiddens = []

        if cache is not None and "chunk_size" in cache:
            alphas[:, : cache["chunk_size"][0]] = 0.0
            if not is_final:
                alphas[:, sum(cache["chunk_size"][:2]) :] = 0.0
        if cache is not None and "cif_alphas" in cache and "cif_hidden" in cache:
            cache["cif_hidden"] = to_device(cache["cif_hidden"], device=hidden.device)
            cache["cif_alphas"] = to_device(cache["cif_alphas"], device=alphas.device)
            hidden = torch.cat((cache["cif_hidden"], hidden), dim=1)
            alphas = torch.cat((cache["cif_alphas"], alphas), dim=1)
        if cache is not None and is_final:
            tail_hidden = torch.zeros(
                (batch_size, 1, hidden_size), device=hidden.device
            )
            tail_alphas = torch.tensor([[self.tail_threshold]], device=alphas.device)
            tail_alphas = torch.tile(tail_alphas, (batch_size, 1))
            hidden = torch.cat((hidden, tail_hidden), dim=1)
            alphas = torch.cat((alphas, tail_alphas), dim=1)

        len_time = alphas.shape[1]
        for b in range(batch_size):
            integrate = 0.0
            frames = torch.zeros((hidden_size), device=hidden.device)
            list_frame = []
            list_fire = []
            for t in range(len_time):
                alpha = alphas[b][t]
                if alpha + integrate < self.threshold:
                    integrate += alpha
                    list_fire.append(integrate)
                    frames += alpha * hidden[b][t]
                else:
                    frames += (self.threshold - integrate) * hidden[b][t]
                    list_frame.append(frames)
                    integrate += alpha
                    list_fire.append(integrate)
                    integrate -= self.threshold
                    frames = integrate * hidden[b][t]

            cache_alphas.append(integrate)
            if integrate > 0.0:
                cache_hiddens.append(frames / integrate)
            else:
                cache_hiddens.append(frames)

            token_length.append(torch.tensor(len(list_frame), device=alphas.device))
            list_fires.append(list_fire)
            list_frames.append(list_frame)

        cache["cif_alphas"] = torch.stack(cache_alphas, axis=0)
        cache["cif_alphas"] = torch.unsqueeze(cache["cif_alphas"], axis=0)
        cache["cif_hidden"] = torch.stack(cache_hiddens, axis=0)
        cache["cif_hidden"] = torch.unsqueeze(cache["cif_hidden"], axis=0)

        max_token_len = max(token_length)
        if max_token_len == 0:
            return hidden, torch.stack(token_length, 0), None, None
        list_ls = []
        for b in range(batch_size):
            pad_frames = torch.zeros(
                (max_token_len - token_length[b], hidden_size), device=alphas.device
            )
            if token_length[b] == 0:
                list_ls.append(pad_frames)
            else:
                list_frames[b] = torch.stack(list_frames[b])
                list_ls.append(torch.cat((list_frames[b], pad_frames), dim=0))

        cache["cif_alphas"] = torch.stack(cache_alphas, axis=0)
        cache["cif_alphas"] = torch.unsqueeze(cache["cif_alphas"], axis=0)
        cache["cif_hidden"] = torch.stack(cache_hiddens, axis=0)
        cache["cif_hidden"] = torch.unsqueeze(cache["cif_hidden"], axis=0)
        return torch.stack(list_ls, 0), torch.stack(token_length, 0), None, None

    def tail_process_fn(self, hidden, alphas, token_num=None, mask=None):
        b, t, d = hidden.size()
        tail_threshold = self.tail_threshold
        if mask is not None:
            zeros_t = torch.zeros((b, 1), dtype=torch.float32, device=alphas.device)
            ones_t = torch.ones_like(zeros_t)
            mask_1 = torch.cat([mask, zeros_t], dim=1)
            mask_2 = torch.cat([ones_t, mask], dim=1)
            mask = mask_2 - mask_1
            tail_threshold = mask * tail_threshold
            alphas = torch.cat([alphas, zeros_t], dim=1)
            alphas = torch.add(alphas, tail_threshold)
        else:
            tail_threshold = torch.tensor([tail_threshold], dtype=alphas.dtype).to(
                alphas.device
            )
            tail_threshold = torch.reshape(tail_threshold, (1, 1))
            if b > 1:
                alphas = torch.cat([alphas, tail_threshold.repeat(b, 1)], dim=1)
            else:
                alphas = torch.cat([alphas, tail_threshold], dim=1)
        zeros = torch.zeros((b, 1, d), dtype=hidden.dtype).to(hidden.device)
        hidden = torch.cat([hidden, zeros], dim=1)
        token_num = alphas.sum(dim=-1)
        token_num_floor = torch.floor(token_num)

        return hidden, alphas, token_num_floor

    def gen_frame_alignments(

        self, alphas: torch.Tensor = None, encoder_sequence_length: torch.Tensor = None

    ):
        batch_size, maximum_length = alphas.size()
        int_type = torch.int32

        is_training = self.training
        if is_training:
            token_num = torch.round(torch.sum(alphas, dim=1)).type(int_type)
        else:
            token_num = torch.floor(torch.sum(alphas, dim=1)).type(int_type)

        max_token_num = torch.max(token_num).item()

        alphas_cumsum = torch.cumsum(alphas, dim=1)
        alphas_cumsum = torch.floor(alphas_cumsum).type(int_type)
        alphas_cumsum = alphas_cumsum[:, None, :].repeat(1, max_token_num, 1)

        index = torch.ones([batch_size, max_token_num], dtype=int_type)
        index = torch.cumsum(index, dim=1)
        index = index[:, :, None].repeat(1, 1, maximum_length).to(alphas_cumsum.device)

        index_div = torch.floor(torch.true_divide(alphas_cumsum, index)).type(int_type)
        index_div_bool_zeros = index_div.eq(0)
        index_div_bool_zeros_count = torch.sum(index_div_bool_zeros, dim=-1) + 1
        index_div_bool_zeros_count = torch.clamp(
            index_div_bool_zeros_count, 0, encoder_sequence_length.max()
        )
        token_num_mask = (~make_pad_mask(token_num, maxlen=max_token_num)).to(
            token_num.device
        )
        index_div_bool_zeros_count *= token_num_mask

        index_div_bool_zeros_count_tile = index_div_bool_zeros_count[:, :, None].repeat(
            1, 1, maximum_length
        )
        ones = torch.ones_like(index_div_bool_zeros_count_tile)
        zeros = torch.zeros_like(index_div_bool_zeros_count_tile)
        ones = torch.cumsum(ones, dim=2)
        cond = index_div_bool_zeros_count_tile == ones
        index_div_bool_zeros_count_tile = torch.where(cond, zeros, ones)

        index_div_bool_zeros_count_tile_bool = index_div_bool_zeros_count_tile.type(
            torch.bool
        )
        index_div_bool_zeros_count_tile = 1 - index_div_bool_zeros_count_tile_bool.type(
            int_type
        )
        index_div_bool_zeros_count_tile_out = torch.sum(
            index_div_bool_zeros_count_tile, dim=1
        )
        index_div_bool_zeros_count_tile_out = index_div_bool_zeros_count_tile_out.type(
            int_type
        )
        predictor_mask = (
            (
                ~make_pad_mask(
                    encoder_sequence_length, maxlen=encoder_sequence_length.max()
                )
            )
            .type(int_type)
            .to(encoder_sequence_length.device)
        )
        index_div_bool_zeros_count_tile_out = (
            index_div_bool_zeros_count_tile_out * predictor_mask
        )

        predictor_alignments = index_div_bool_zeros_count_tile_out
        predictor_alignments_length = predictor_alignments.sum(-1).type(
            encoder_sequence_length.dtype
        )
        return predictor_alignments.detach(), predictor_alignments_length.detach()

    def gen_tf2torch_map_dict(self):

        tensor_name_prefix_torch = self.tf2torch_tensor_name_prefix_torch
        tensor_name_prefix_tf = self.tf2torch_tensor_name_prefix_tf
        map_dict_local = {
            ## predictor
            "{}.cif_conv1d.weight".format(tensor_name_prefix_torch): {
                "name": "{}/conv1d/kernel".format(tensor_name_prefix_tf),
                "squeeze": None,
                "transpose": (2, 1, 0),
            },  # (256,256,3),(3,256,256)
            "{}.cif_conv1d.bias".format(tensor_name_prefix_torch): {
                "name": "{}/conv1d/bias".format(tensor_name_prefix_tf),
                "squeeze": None,
                "transpose": None,
            },  # (256,),(256,)
            "{}.cif_output.weight".format(tensor_name_prefix_torch): {
                "name": "{}/conv1d_1/kernel".format(tensor_name_prefix_tf),
                "squeeze": 0,
                "transpose": (1, 0),
            },  # (1,256),(1,256,1)
            "{}.cif_output.bias".format(tensor_name_prefix_torch): {
                "name": "{}/conv1d_1/bias".format(tensor_name_prefix_tf),
                "squeeze": None,
                "transpose": None,
            },  # (1,),(1,)
        }
        return map_dict_local

    def convert_tf2torch(

        self,

        var_dict_tf,

        var_dict_torch,

    ):
        map_dict = self.gen_tf2torch_map_dict()
        var_dict_torch_update = dict()
        for name in sorted(var_dict_torch.keys(), reverse=False):
            names = name.split(".")
            if names[0] == self.tf2torch_tensor_name_prefix_torch:
                name_tf = map_dict[name]["name"]
                data_tf = var_dict_tf[name_tf]
                if map_dict[name]["squeeze"] is not None:
                    data_tf = np.squeeze(data_tf, axis=map_dict[name]["squeeze"])
                if map_dict[name]["transpose"] is not None:
                    data_tf = np.transpose(data_tf, map_dict[name]["transpose"])
                data_tf = torch.from_numpy(data_tf).type(torch.float32).to("cpu")
                assert (
                    var_dict_torch[name].size() == data_tf.size()
                ), "{}, {}, {} != {}".format(
                    name, name_tf, var_dict_torch[name].size(), data_tf.size()
                )
                var_dict_torch_update[name] = data_tf
                logging.info(
                    "torch tensor: {}, {}, loading from tf tensor: {}, {}".format(
                        name, data_tf.size(), name_tf, var_dict_tf[name_tf].shape
                    )
                )

        return var_dict_torch_update


class mae_loss(torch.nn.Module):

    def __init__(self, normalize_length=False):
        super(mae_loss, self).__init__()
        self.normalize_length = normalize_length
        self.criterion = torch.nn.L1Loss(reduction="sum")

    def forward(self, token_length, pre_token_length):
        loss_token_normalizer = token_length.size(0)
        if self.normalize_length:
            loss_token_normalizer = token_length.sum().type(torch.float32)
        loss = self.criterion(token_length, pre_token_length)
        loss = loss / loss_token_normalizer
        return loss


def cif(hidden, alphas, threshold):
    batch_size, len_time, hidden_size = hidden.size()

    # loop varss
    integrate = torch.zeros([batch_size], device=hidden.device)
    frame = torch.zeros([batch_size, hidden_size], device=hidden.device)
    # intermediate vars along time
    list_fires = []
    list_frames = []

    for t in range(len_time):
        alpha = alphas[:, t]
        distribution_completion = (
            torch.ones([batch_size], device=hidden.device) - integrate
        )

        integrate += alpha
        list_fires.append(integrate)

        fire_place = integrate >= threshold
        integrate = torch.where(
            fire_place,
            integrate - torch.ones([batch_size], device=hidden.device),
            integrate,
        )
        cur = torch.where(fire_place, distribution_completion, alpha)
        remainds = alpha - cur

        frame += cur[:, None] * hidden[:, t, :]
        list_frames.append(frame)
        frame = torch.where(
            fire_place[:, None].repeat(1, hidden_size),
            remainds[:, None] * hidden[:, t, :],
            frame,
        )

    fires = torch.stack(list_fires, 1)
    frames = torch.stack(list_frames, 1)
    list_ls = []
    len_labels = torch.round(alphas.sum(-1)).int()
    max_label_len = len_labels.max()
    for b in range(batch_size):
        fire = fires[b, :]
        l = torch.index_select(
            frames[b, :, :], 0, torch.nonzero(fire >= threshold).squeeze()
        )
        pad_l = torch.zeros(
            [max_label_len - l.size(0), hidden_size], device=hidden.device
        )
        list_ls.append(torch.cat([l, pad_l], 0))
    return torch.stack(list_ls, 0), fires


def cif_wo_hidden(alphas, threshold):
    batch_size, len_time = alphas.size()

    # loop varss
    integrate = torch.zeros([batch_size], device=alphas.device)
    # intermediate vars along time
    list_fires = []

    for t in range(len_time):
        alpha = alphas[:, t]

        integrate += alpha
        list_fires.append(integrate)

        fire_place = integrate >= threshold
        integrate = torch.where(
            fire_place,
            integrate - torch.ones([batch_size], device=alphas.device) * threshold,
            integrate,
        )

    fires = torch.stack(list_fires, 1)
    return fires