File size: 38,123 Bytes
67c46fd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
"""Beam search module."""

from itertools import chain
import logging
from typing import Any
from typing import Dict
from typing import List
from typing import NamedTuple
from typing import Tuple
from typing import Union

import torch

from funasr_detach.metrics.common import end_detect
from funasr_detach.models.transformer.scorers.scorer_interface import (
    PartialScorerInterface,
)
from funasr_detach.models.transformer.scorers.scorer_interface import ScorerInterface


class Hypothesis(NamedTuple):
    """Hypothesis data type."""

    yseq: torch.Tensor
    score: Union[float, torch.Tensor] = 0
    scores: Dict[str, Union[float, torch.Tensor]] = dict()
    states: Dict[str, Any] = dict()

    def asdict(self) -> dict:
        """Convert data to JSON-friendly dict."""
        return self._replace(
            yseq=self.yseq.tolist(),
            score=float(self.score),
            scores={k: float(v) for k, v in self.scores.items()},
        )._asdict()


class BeamSearchScama(torch.nn.Module):
    """Beam search implementation."""

    def __init__(
        self,
        scorers: Dict[str, ScorerInterface],
        weights: Dict[str, float],
        beam_size: int,
        vocab_size: int,
        sos: int,
        eos: int,
        token_list: List[str] = None,
        pre_beam_ratio: float = 1.5,
        pre_beam_score_key: str = None,
    ):
        """Initialize beam search.

        Args:
            scorers (dict[str, ScorerInterface]): Dict of decoder modules
                e.g., Decoder, CTCPrefixScorer, LM
                The scorer will be ignored if it is `None`
            weights (dict[str, float]): Dict of weights for each scorers
                The scorer will be ignored if its weight is 0
            beam_size (int): The number of hypotheses kept during search
            vocab_size (int): The number of vocabulary
            sos (int): Start of sequence id
            eos (int): End of sequence id
            token_list (list[str]): List of tokens for debug log
            pre_beam_score_key (str): key of scores to perform pre-beam search
            pre_beam_ratio (float): beam size in the pre-beam search
                will be `int(pre_beam_ratio * beam_size)`

        """
        super().__init__()
        # set scorers
        self.weights = weights
        self.scorers = dict()
        self.full_scorers = dict()
        self.part_scorers = dict()
        # this module dict is required for recursive cast
        # `self.to(device, dtype)` in `recog.py`
        self.nn_dict = torch.nn.ModuleDict()
        for k, v in scorers.items():
            w = weights.get(k, 0)
            if w == 0 or v is None:
                continue
            assert isinstance(
                v, ScorerInterface
            ), f"{k} ({type(v)}) does not implement ScorerInterface"
            self.scorers[k] = v
            if isinstance(v, PartialScorerInterface):
                self.part_scorers[k] = v
            else:
                self.full_scorers[k] = v
            if isinstance(v, torch.nn.Module):
                self.nn_dict[k] = v

        # set configurations
        self.sos = sos
        self.eos = eos
        self.token_list = token_list
        self.pre_beam_size = int(pre_beam_ratio * beam_size)
        self.beam_size = beam_size
        self.n_vocab = vocab_size
        if (
            pre_beam_score_key is not None
            and pre_beam_score_key != "full"
            and pre_beam_score_key not in self.full_scorers
        ):
            raise KeyError(f"{pre_beam_score_key} is not found in {self.full_scorers}")
        self.pre_beam_score_key = pre_beam_score_key
        self.do_pre_beam = (
            self.pre_beam_score_key is not None
            and self.pre_beam_size < self.n_vocab
            and len(self.part_scorers) > 0
        )

    def init_hyp(self, x: torch.Tensor) -> List[Hypothesis]:
        """Get an initial hypothesis data.

        Args:
            x (torch.Tensor): The encoder output feature

        Returns:
            Hypothesis: The initial hypothesis.

        """
        init_states = dict()
        init_scores = dict()
        for k, d in self.scorers.items():
            init_states[k] = d.init_state(x)
            init_scores[k] = 0.0
        return [
            Hypothesis(
                score=0.0,
                scores=init_scores,
                states=init_states,
                yseq=torch.tensor([self.sos], device=x.device),
            )
        ]

    @staticmethod
    def append_token(xs: torch.Tensor, x: int) -> torch.Tensor:
        """Append new token to prefix tokens.

        Args:
            xs (torch.Tensor): The prefix token
            x (int): The new token to append

        Returns:
            torch.Tensor: New tensor contains: xs + [x] with xs.dtype and xs.device

        """
        x = torch.tensor([x], dtype=xs.dtype, device=xs.device)
        return torch.cat((xs, x))

    def score_full(
        self,
        hyp: Hypothesis,
        x: torch.Tensor,
        x_mask: torch.Tensor = None,
        pre_acoustic_embeds: torch.Tensor = None,
    ) -> Tuple[Dict[str, torch.Tensor], Dict[str, Any]]:
        """Score new hypothesis by `self.full_scorers`.

        Args:
            hyp (Hypothesis): Hypothesis with prefix tokens to score
            x (torch.Tensor): Corresponding input feature

        Returns:
            Tuple[Dict[str, torch.Tensor], Dict[str, Any]]: Tuple of
                score dict of `hyp` that has string keys of `self.full_scorers`
                and tensor score values of shape: `(self.n_vocab,)`,
                and state dict that has string keys
                and state values of `self.full_scorers`

        """
        scores = dict()
        states = dict()
        for k, d in self.full_scorers.items():
            scores[k], states[k] = d.score(
                hyp.yseq,
                hyp.states[k],
                x,
                x_mask=x_mask,
                pre_acoustic_embeds=pre_acoustic_embeds,
            )
        return scores, states

    def score_partial(
        self, hyp: Hypothesis, ids: torch.Tensor, x: torch.Tensor
    ) -> Tuple[Dict[str, torch.Tensor], Dict[str, Any]]:
        """Score new hypothesis by `self.part_scorers`.

        Args:
            hyp (Hypothesis): Hypothesis with prefix tokens to score
            ids (torch.Tensor): 1D tensor of new partial tokens to score
            x (torch.Tensor): Corresponding input feature

        Returns:
            Tuple[Dict[str, torch.Tensor], Dict[str, Any]]: Tuple of
                score dict of `hyp` that has string keys of `self.part_scorers`
                and tensor score values of shape: `(len(ids),)`,
                and state dict that has string keys
                and state values of `self.part_scorers`

        """
        scores = dict()
        states = dict()
        for k, d in self.part_scorers.items():
            scores[k], states[k] = d.score_partial(hyp.yseq, ids, hyp.states[k], x)
        return scores, states

    def beam(
        self, weighted_scores: torch.Tensor, ids: torch.Tensor
    ) -> Tuple[torch.Tensor, torch.Tensor]:
        """Compute topk full token ids and partial token ids.

        Args:
            weighted_scores (torch.Tensor): The weighted sum scores for each tokens.
            Its shape is `(self.n_vocab,)`.
            ids (torch.Tensor): The partial token ids to compute topk

        Returns:
            Tuple[torch.Tensor, torch.Tensor]:
                The topk full token ids and partial token ids.
                Their shapes are `(self.beam_size,)`

        """
        # no pre beam performed
        if weighted_scores.size(0) == ids.size(0):
            top_ids = weighted_scores.topk(self.beam_size)[1]
            return top_ids, top_ids

        # mask pruned in pre-beam not to select in topk
        tmp = weighted_scores[ids]
        weighted_scores[:] = -float("inf")
        weighted_scores[ids] = tmp
        top_ids = weighted_scores.topk(self.beam_size)[1]
        local_ids = weighted_scores[ids].topk(self.beam_size)[1]
        return top_ids, local_ids

    @staticmethod
    def merge_scores(
        prev_scores: Dict[str, float],
        next_full_scores: Dict[str, torch.Tensor],
        full_idx: int,
        next_part_scores: Dict[str, torch.Tensor],
        part_idx: int,
    ) -> Dict[str, torch.Tensor]:
        """Merge scores for new hypothesis.

        Args:
            prev_scores (Dict[str, float]):
                The previous hypothesis scores by `self.scorers`
            next_full_scores (Dict[str, torch.Tensor]): scores by `self.full_scorers`
            full_idx (int): The next token id for `next_full_scores`
            next_part_scores (Dict[str, torch.Tensor]):
                scores of partial tokens by `self.part_scorers`
            part_idx (int): The new token id for `next_part_scores`

        Returns:
            Dict[str, torch.Tensor]: The new score dict.
                Its keys are names of `self.full_scorers` and `self.part_scorers`.
                Its values are scalar tensors by the scorers.

        """
        new_scores = dict()
        for k, v in next_full_scores.items():
            new_scores[k] = prev_scores[k] + v[full_idx]
        for k, v in next_part_scores.items():
            new_scores[k] = prev_scores[k] + v[part_idx]
        return new_scores

    def merge_states(self, states: Any, part_states: Any, part_idx: int) -> Any:
        """Merge states for new hypothesis.

        Args:
            states: states of `self.full_scorers`
            part_states: states of `self.part_scorers`
            part_idx (int): The new token id for `part_scores`

        Returns:
            Dict[str, torch.Tensor]: The new score dict.
                Its keys are names of `self.full_scorers` and `self.part_scorers`.
                Its values are states of the scorers.

        """
        new_states = dict()
        for k, v in states.items():
            new_states[k] = v
        for k, d in self.part_scorers.items():
            new_states[k] = d.select_state(part_states[k], part_idx)
        return new_states

    def search(
        self,
        running_hyps: List[Hypothesis],
        x: torch.Tensor,
        x_mask: torch.Tensor = None,
        pre_acoustic_embeds: torch.Tensor = None,
    ) -> List[Hypothesis]:
        """Search new tokens for running hypotheses and encoded speech x.

        Args:
            running_hyps (List[Hypothesis]): Running hypotheses on beam
            x (torch.Tensor): Encoded speech feature (T, D)

        Returns:
            List[Hypotheses]: Best sorted hypotheses

        """
        best_hyps = []
        part_ids = torch.arange(self.n_vocab, device=x.device)  # no pre-beam
        for hyp in running_hyps:
            # scoring
            weighted_scores = torch.zeros(self.n_vocab, dtype=x.dtype, device=x.device)
            scores, states = self.score_full(
                hyp, x, x_mask=x_mask, pre_acoustic_embeds=pre_acoustic_embeds
            )
            for k in self.full_scorers:
                weighted_scores += self.weights[k] * scores[k]
            # partial scoring
            if self.do_pre_beam:
                pre_beam_scores = (
                    weighted_scores
                    if self.pre_beam_score_key == "full"
                    else scores[self.pre_beam_score_key]
                )
                part_ids = torch.topk(pre_beam_scores, self.pre_beam_size)[1]
            part_scores, part_states = self.score_partial(hyp, part_ids, x)
            for k in self.part_scorers:
                weighted_scores[part_ids] += self.weights[k] * part_scores[k]
            # add previous hyp score
            weighted_scores += hyp.score

            # update hyps
            for j, part_j in zip(*self.beam(weighted_scores, part_ids)):
                # will be (2 x beam at most)
                best_hyps.append(
                    Hypothesis(
                        score=weighted_scores[j],
                        yseq=self.append_token(hyp.yseq, j),
                        scores=self.merge_scores(
                            hyp.scores, scores, j, part_scores, part_j
                        ),
                        states=self.merge_states(states, part_states, part_j),
                    )
                )

            # sort and prune 2 x beam -> beam
            best_hyps = sorted(best_hyps, key=lambda x: x.score, reverse=True)[
                : min(len(best_hyps), self.beam_size)
            ]
        return best_hyps

    def forward(
        self,
        x: torch.Tensor,
        scama_mask: torch.Tensor = None,
        pre_acoustic_embeds: torch.Tensor = None,
        maxlenratio: float = 0.0,
        minlenratio: float = 0.0,
        maxlen: int = None,
        minlen: int = 0,
    ) -> List[Hypothesis]:
        """Perform beam search.

        Args:
            x (torch.Tensor): Encoded speech feature (T, D)
            maxlenratio (float): Input length ratio to obtain max output length.
                If maxlenratio=0.0 (default), it uses a end-detect function
                to automatically find maximum hypothesis lengths
                If maxlenratio<0.0, its absolute value is interpreted
                as a constant max output length.
            minlenratio (float): Input length ratio to obtain min output length.

        Returns:
            list[Hypothesis]: N-best decoding results

        """
        if maxlen is None:
            # set length bounds
            if maxlenratio == 0:
                maxlen = x.shape[0]
            elif maxlenratio < 0:
                maxlen = -1 * int(maxlenratio)
            else:
                maxlen = max(1, int(maxlenratio * x.size(0)))
            minlen = int(minlenratio * x.size(0))

        logging.info("decoder input length: " + str(x.shape[0]))
        logging.info("max output length: " + str(maxlen))
        logging.info("min output length: " + str(minlen))

        # main loop of prefix search
        running_hyps = self.init_hyp(x)
        ended_hyps = []
        for i in range(maxlen):
            logging.debug("position " + str(i))
            mask_enc = None
            if scama_mask is not None:
                token_num_predictor = scama_mask.size(1)
                token_id_slice = min(i, token_num_predictor - 1)
                mask_enc = scama_mask[:, token_id_slice : token_id_slice + 1, :]
                # if mask_enc.size(1) == 0:
                #     mask_enc = scama_mask[:, -2:-1, :]
                #     # mask_enc = torch.zeros_like(mask_enc)
            pre_acoustic_embeds_cur = None
            if pre_acoustic_embeds is not None:
                b, t, d = pre_acoustic_embeds.size()
                pad = torch.zeros((b, 1, d), dtype=pre_acoustic_embeds.dtype).to(
                    device=pre_acoustic_embeds.device
                )
                pre_acoustic_embeds = torch.cat((pre_acoustic_embeds, pad), dim=1)
                token_id_slice = min(i, t)
                pre_acoustic_embeds_cur = pre_acoustic_embeds[
                    :, token_id_slice : token_id_slice + 1, :
                ]

            best = self.search(
                running_hyps,
                x,
                x_mask=mask_enc,
                pre_acoustic_embeds=pre_acoustic_embeds_cur,
            )
            # post process of one iteration
            running_hyps = self.post_process(i, maxlen, maxlenratio, best, ended_hyps)
            # end detection
            if maxlenratio == 0.0 and end_detect([h.asdict() for h in ended_hyps], i):
                logging.info(f"end detected at {i}")
                break
            if len(running_hyps) == 0:
                logging.info("no hypothesis. Finish decoding.")
                break
            else:
                logging.debug(f"remained hypotheses: {len(running_hyps)}")

        nbest_hyps = sorted(ended_hyps, key=lambda x: x.score, reverse=True)
        # check the number of hypotheses reaching to eos
        if len(nbest_hyps) == 0:
            logging.warning(
                "there is no N-best results, perform recognition "
                "again with smaller minlenratio."
            )
            return (
                []
                if minlenratio < 0.1
                else self.forward(x, maxlenratio, max(0.0, minlenratio - 0.1))
            )

        # report the best result
        for x in nbest_hyps:
            yseq = "".join([self.token_list[x] for x in x.yseq])
            logging.debug(
                "nbest: y: {}, yseq: {}, score: {}".format(x.yseq, yseq, x.score)
            )
        best = nbest_hyps[0]
        for k, v in best.scores.items():
            logging.info(
                f"{v:6.2f} * {self.weights[k]:3} = {v * self.weights[k]:6.2f} for {k}"
            )
        logging.info(f"total log probability: {best.score:.2f}")
        logging.info(f"normalized log probability: {best.score / len(best.yseq):.2f}")
        logging.info(f"total number of ended hypotheses: {len(nbest_hyps)}")
        if self.token_list is not None:
            logging.info(
                "best hypo: "
                + "".join([self.token_list[x] for x in best.yseq[1:-1]])
                + "\n"
            )
        return nbest_hyps

    def post_process(
        self,
        i: int,
        maxlen: int,
        maxlenratio: float,
        running_hyps: List[Hypothesis],
        ended_hyps: List[Hypothesis],
    ) -> List[Hypothesis]:
        """Perform post-processing of beam search iterations.

        Args:
            i (int): The length of hypothesis tokens.
            maxlen (int): The maximum length of tokens in beam search.
            maxlenratio (int): The maximum length ratio in beam search.
            running_hyps (List[Hypothesis]): The running hypotheses in beam search.
            ended_hyps (List[Hypothesis]): The ended hypotheses in beam search.

        Returns:
            List[Hypothesis]: The new running hypotheses.

        """
        logging.debug(f"the number of running hypotheses: {len(running_hyps)}")
        if self.token_list is not None:
            logging.debug(
                "best hypo: "
                + "".join([self.token_list[x] for x in running_hyps[0].yseq[1:]])
            )
        # add eos in the final loop to avoid that there are no ended hyps
        if i == maxlen - 1:
            logging.info("adding <eos> in the last position in the loop")
            running_hyps = [
                h._replace(yseq=self.append_token(h.yseq, self.eos))
                for h in running_hyps
            ]

        # add ended hypotheses to a final list, and removed them from current hypotheses
        # (this will be a problem, number of hyps < beam)
        remained_hyps = []
        for hyp in running_hyps:
            if hyp.yseq[-1] == self.eos:
                # e.g., Word LM needs to add final <eos> score
                for k, d in chain(self.full_scorers.items(), self.part_scorers.items()):
                    s = d.final_score(hyp.states[k])
                    hyp.scores[k] += s
                    hyp = hyp._replace(score=hyp.score + self.weights[k] * s)
                ended_hyps.append(hyp)
            else:
                remained_hyps.append(hyp)
        return remained_hyps


class BeamSearchScamaStreaming(torch.nn.Module):
    """Beam search implementation."""

    def __init__(
        self,
        scorers: Dict[str, ScorerInterface],
        weights: Dict[str, float],
        beam_size: int,
        vocab_size: int,
        sos: int,
        eos: int,
        token_list: List[str] = None,
        pre_beam_ratio: float = 1.5,
        pre_beam_score_key: str = None,
    ):
        """Initialize beam search.

        Args:
            scorers (dict[str, ScorerInterface]): Dict of decoder modules
                e.g., Decoder, CTCPrefixScorer, LM
                The scorer will be ignored if it is `None`
            weights (dict[str, float]): Dict of weights for each scorers
                The scorer will be ignored if its weight is 0
            beam_size (int): The number of hypotheses kept during search
            vocab_size (int): The number of vocabulary
            sos (int): Start of sequence id
            eos (int): End of sequence id
            token_list (list[str]): List of tokens for debug log
            pre_beam_score_key (str): key of scores to perform pre-beam search
            pre_beam_ratio (float): beam size in the pre-beam search
                will be `int(pre_beam_ratio * beam_size)`

        """
        super().__init__()
        # set scorers
        self.weights = weights
        self.scorers = dict()
        self.full_scorers = dict()
        self.part_scorers = dict()
        # this module dict is required for recursive cast
        # `self.to(device, dtype)` in `recog.py`
        self.nn_dict = torch.nn.ModuleDict()
        for k, v in scorers.items():
            w = weights.get(k, 0)
            if w == 0 or v is None:
                continue
            assert isinstance(
                v, ScorerInterface
            ), f"{k} ({type(v)}) does not implement ScorerInterface"
            self.scorers[k] = v
            if isinstance(v, PartialScorerInterface):
                self.part_scorers[k] = v
            else:
                self.full_scorers[k] = v
            if isinstance(v, torch.nn.Module):
                self.nn_dict[k] = v

        # set configurations
        self.sos = sos
        self.eos = eos
        self.token_list = token_list
        self.pre_beam_size = int(pre_beam_ratio * beam_size)
        self.beam_size = beam_size
        self.n_vocab = vocab_size
        if (
            pre_beam_score_key is not None
            and pre_beam_score_key != "full"
            and pre_beam_score_key not in self.full_scorers
        ):
            raise KeyError(f"{pre_beam_score_key} is not found in {self.full_scorers}")
        self.pre_beam_score_key = pre_beam_score_key
        self.do_pre_beam = (
            self.pre_beam_score_key is not None
            and self.pre_beam_size < self.n_vocab
            and len(self.part_scorers) > 0
        )

    def init_hyp(self, x) -> List[Hypothesis]:
        """Get an initial hypothesis data.

        Args:
            x (torch.Tensor): The encoder output feature

        Returns:
            Hypothesis: The initial hypothesis.

        """
        init_states = dict()
        init_scores = dict()
        for k, d in self.scorers.items():
            init_states[k] = d.init_state(x)
            init_scores[k] = 0.0
        return [
            Hypothesis(
                score=0.0,
                scores=init_scores,
                states=init_states,
                yseq=torch.tensor([self.sos], device=x.device),
            )
        ]

    @staticmethod
    def append_token(xs: torch.Tensor, x: int) -> torch.Tensor:
        """Append new token to prefix tokens.

        Args:
            xs (torch.Tensor): The prefix token
            x (int): The new token to append

        Returns:
            torch.Tensor: New tensor contains: xs + [x] with xs.dtype and xs.device

        """
        x = torch.tensor([x], dtype=xs.dtype, device=xs.device)
        return torch.cat((xs, x))

    def score_full(
        self,
        hyp: Hypothesis,
        x: torch.Tensor,
        x_mask: torch.Tensor = None,
        pre_acoustic_embeds: torch.Tensor = None,
        cache: dict = {},
    ) -> Tuple[Dict[str, torch.Tensor], Dict[str, Any]]:
        """Score new hypothesis by `self.full_scorers`.

        Args:
            hyp (Hypothesis): Hypothesis with prefix tokens to score
            x (torch.Tensor): Corresponding input feature

        Returns:
            Tuple[Dict[str, torch.Tensor], Dict[str, Any]]: Tuple of
                score dict of `hyp` that has string keys of `self.full_scorers`
                and tensor score values of shape: `(self.n_vocab,)`,
                and state dict that has string keys
                and state values of `self.full_scorers`

        """
        scores = dict()
        states = dict()
        for k, d in self.full_scorers.items():
            scores[k], states[k] = d.score(
                hyp.yseq,
                hyp.states[k],
                x,
                x_mask=x_mask,
                pre_acoustic_embeds=pre_acoustic_embeds,
                cache=cache,
            )
        return scores, states

    def score_partial(
        self, hyp: Hypothesis, ids: torch.Tensor, x: torch.Tensor
    ) -> Tuple[Dict[str, torch.Tensor], Dict[str, Any]]:
        """Score new hypothesis by `self.part_scorers`.

        Args:
            hyp (Hypothesis): Hypothesis with prefix tokens to score
            ids (torch.Tensor): 1D tensor of new partial tokens to score
            x (torch.Tensor): Corresponding input feature

        Returns:
            Tuple[Dict[str, torch.Tensor], Dict[str, Any]]: Tuple of
                score dict of `hyp` that has string keys of `self.part_scorers`
                and tensor score values of shape: `(len(ids),)`,
                and state dict that has string keys
                and state values of `self.part_scorers`

        """
        scores = dict()
        states = dict()
        for k, d in self.part_scorers.items():
            scores[k], states[k] = d.score_partial(hyp.yseq, ids, hyp.states[k], x)
        return scores, states

    def beam(
        self, weighted_scores: torch.Tensor, ids: torch.Tensor
    ) -> Tuple[torch.Tensor, torch.Tensor]:
        """Compute topk full token ids and partial token ids.

        Args:
            weighted_scores (torch.Tensor): The weighted sum scores for each tokens.
            Its shape is `(self.n_vocab,)`.
            ids (torch.Tensor): The partial token ids to compute topk

        Returns:
            Tuple[torch.Tensor, torch.Tensor]:
                The topk full token ids and partial token ids.
                Their shapes are `(self.beam_size,)`

        """
        # no pre beam performed
        if weighted_scores.size(0) == ids.size(0):
            top_ids = weighted_scores.topk(self.beam_size)[1]
            return top_ids, top_ids

        # mask pruned in pre-beam not to select in topk
        tmp = weighted_scores[ids]
        weighted_scores[:] = -float("inf")
        weighted_scores[ids] = tmp
        top_ids = weighted_scores.topk(self.beam_size)[1]
        local_ids = weighted_scores[ids].topk(self.beam_size)[1]
        return top_ids, local_ids

    @staticmethod
    def merge_scores(
        prev_scores: Dict[str, float],
        next_full_scores: Dict[str, torch.Tensor],
        full_idx: int,
        next_part_scores: Dict[str, torch.Tensor],
        part_idx: int,
    ) -> Dict[str, torch.Tensor]:
        """Merge scores for new hypothesis.

        Args:
            prev_scores (Dict[str, float]):
                The previous hypothesis scores by `self.scorers`
            next_full_scores (Dict[str, torch.Tensor]): scores by `self.full_scorers`
            full_idx (int): The next token id for `next_full_scores`
            next_part_scores (Dict[str, torch.Tensor]):
                scores of partial tokens by `self.part_scorers`
            part_idx (int): The new token id for `next_part_scores`

        Returns:
            Dict[str, torch.Tensor]: The new score dict.
                Its keys are names of `self.full_scorers` and `self.part_scorers`.
                Its values are scalar tensors by the scorers.

        """
        new_scores = dict()
        for k, v in next_full_scores.items():
            new_scores[k] = prev_scores[k] + v[full_idx]
        for k, v in next_part_scores.items():
            new_scores[k] = prev_scores[k] + v[part_idx]
        return new_scores

    def merge_states(self, states: Any, part_states: Any, part_idx: int) -> Any:
        """Merge states for new hypothesis.

        Args:
            states: states of `self.full_scorers`
            part_states: states of `self.part_scorers`
            part_idx (int): The new token id for `part_scores`

        Returns:
            Dict[str, torch.Tensor]: The new score dict.
                Its keys are names of `self.full_scorers` and `self.part_scorers`.
                Its values are states of the scorers.

        """
        new_states = dict()
        for k, v in states.items():
            new_states[k] = v
        for k, d in self.part_scorers.items():
            new_states[k] = d.select_state(part_states[k], part_idx)
        return new_states

    def search(
        self,
        running_hyps: List[Hypothesis],
        x: torch.Tensor,
        x_mask: torch.Tensor = None,
        pre_acoustic_embeds: torch.Tensor = None,
        cache: dict = {},
    ) -> List[Hypothesis]:
        """Search new tokens for running hypotheses and encoded speech x.

        Args:
            running_hyps (List[Hypothesis]): Running hypotheses on beam
            x (torch.Tensor): Encoded speech feature (T, D)

        Returns:
            List[Hypotheses]: Best sorted hypotheses

        """
        best_hyps = []
        part_ids = torch.arange(self.n_vocab, device=x.device)  # no pre-beam
        for hyp in running_hyps:
            # scoring
            weighted_scores = torch.zeros(self.n_vocab, dtype=x.dtype, device=x.device)
            scores, states = self.score_full(
                hyp,
                x,
                x_mask=x_mask,
                pre_acoustic_embeds=pre_acoustic_embeds,
                cache=cache,
            )
            for k in self.full_scorers:
                weighted_scores += self.weights[k] * scores[k]
            # partial scoring
            if self.do_pre_beam:
                pre_beam_scores = (
                    weighted_scores
                    if self.pre_beam_score_key == "full"
                    else scores[self.pre_beam_score_key]
                )
                part_ids = torch.topk(pre_beam_scores, self.pre_beam_size)[1]
            part_scores, part_states = self.score_partial(hyp, part_ids, x)
            for k in self.part_scorers:
                weighted_scores[part_ids] += self.weights[k] * part_scores[k]
            # add previous hyp score
            weighted_scores += hyp.score

            # update hyps
            for j, part_j in zip(*self.beam(weighted_scores, part_ids)):
                # will be (2 x beam at most)
                best_hyps.append(
                    Hypothesis(
                        score=weighted_scores[j],
                        yseq=self.append_token(hyp.yseq, j),
                        scores=self.merge_scores(
                            hyp.scores, scores, j, part_scores, part_j
                        ),
                        states=self.merge_states(states, part_states, part_j),
                    )
                )

            # sort and prune 2 x beam -> beam
            best_hyps = sorted(best_hyps, key=lambda x: x.score, reverse=True)[
                : min(len(best_hyps), self.beam_size)
            ]
        return best_hyps

    def forward(
        self,
        x: torch.Tensor,
        scama_mask: torch.Tensor = None,
        pre_acoustic_embeds: torch.Tensor = None,
        maxlenratio: float = 0.0,
        minlenratio: float = 0.0,
        maxlen: int = None,
        minlen: int = 0,
        cache: dict = {},
    ) -> List[Hypothesis]:
        """Perform beam search.

        Args:
            x (torch.Tensor): Encoded speech feature (T, D)
            maxlenratio (float): Input length ratio to obtain max output length.
                If maxlenratio=0.0 (default), it uses a end-detect function
                to automatically find maximum hypothesis lengths
                If maxlenratio<0.0, its absolute value is interpreted
                as a constant max output length.
            minlenratio (float): Input length ratio to obtain min output length.

        Returns:
            list[Hypothesis]: N-best decoding results

        """
        if maxlen is None:
            # set length bounds
            if maxlenratio == 0:
                maxlen = x.shape[0]
            elif maxlenratio < 0:
                maxlen = -1 * int(maxlenratio)
            else:
                maxlen = max(1, int(maxlenratio * x.size(0)))
            minlen = int(minlenratio * x.size(0))

        logging.info("decoder input length: " + str(x.shape[0]))
        logging.info("max output length: " + str(maxlen))
        logging.info("min output length: " + str(minlen))

        # main loop of prefix search
        # running_hyps = self.init_hyp(x)
        running_hyps = cache["running_hyps"]
        ended_hyps = []
        for i in range(maxlen):
            logging.debug("position " + str(i))
            mask_enc = None
            # if scama_mask is not None:
            #     token_num_predictor = scama_mask.size(1)
            #     token_id_slice = min(i, token_num_predictor-1)
            #     mask_enc = scama_mask[:, token_id_slice:token_id_slice+1, :]
            #     # if mask_enc.size(1) == 0:
            #     #     mask_enc = scama_mask[:, -2:-1, :]
            #     #     # mask_enc = torch.zeros_like(mask_enc)
            pre_acoustic_embeds_cur = None
            if pre_acoustic_embeds is not None:
                b, t, d = pre_acoustic_embeds.size()
                pad = torch.zeros((b, 1, d), dtype=pre_acoustic_embeds.dtype).to(
                    device=pre_acoustic_embeds.device
                )
                pre_acoustic_embeds = torch.cat((pre_acoustic_embeds, pad), dim=1)
                token_id_slice = min(i, t)
                pre_acoustic_embeds_cur = pre_acoustic_embeds[
                    :, token_id_slice : token_id_slice + 1, :
                ]

            best = self.search(
                running_hyps,
                x,
                x_mask=mask_enc,
                pre_acoustic_embeds=pre_acoustic_embeds_cur,
                cache=cache["decoder"],
            )
            # post process of one iteration
            running_hyps = self.post_process(i, maxlen, maxlenratio, best, ended_hyps)
            # end detection
            if maxlenratio == 0.0 and end_detect([h.asdict() for h in ended_hyps], i):
                logging.info(f"end detected at {i}")
                break
            if len(running_hyps) == 0:
                logging.info("no hypothesis. Finish decoding.")
                break
            else:
                logging.debug(f"remained hypotheses: {len(running_hyps)}")

        nbest_hyps = sorted(ended_hyps, key=lambda x: x.score, reverse=True)
        # check the number of hypotheses reaching to eos
        if len(nbest_hyps) == 0:
            logging.warning(
                "there is no N-best results, perform recognition "
                "again with smaller minlenratio."
            )
            return (
                []
                if minlenratio < 0.1
                else self.forward(x, maxlenratio, max(0.0, minlenratio - 0.1))
            )

        # report the best result
        for x in nbest_hyps:
            yseq = "".join([self.token_list[x] for x in x.yseq])
            logging.debug(
                "nbest: y: {}, yseq: {}, score: {}".format(x.yseq, yseq, x.score)
            )
        best = nbest_hyps[0]
        for k, v in best.scores.items():
            logging.info(
                f"{v:6.2f} * {self.weights[k]:3} = {v * self.weights[k]:6.2f} for {k}"
            )
        logging.info(f"total log probability: {best.score:.2f}")
        logging.info(f"normalized log probability: {best.score / len(best.yseq):.2f}")
        logging.info(f"total number of ended hypotheses: {len(nbest_hyps)}")
        if self.token_list is not None:
            logging.info(
                "best hypo: "
                + "".join([self.token_list[x] for x in best.yseq[1:-1]])
                + "\n"
            )
        return nbest_hyps

    def post_process(
        self,
        i: int,
        maxlen: int,
        maxlenratio: float,
        running_hyps: List[Hypothesis],
        ended_hyps: List[Hypothesis],
    ) -> List[Hypothesis]:
        """Perform post-processing of beam search iterations.

        Args:
            i (int): The length of hypothesis tokens.
            maxlen (int): The maximum length of tokens in beam search.
            maxlenratio (int): The maximum length ratio in beam search.
            running_hyps (List[Hypothesis]): The running hypotheses in beam search.
            ended_hyps (List[Hypothesis]): The ended hypotheses in beam search.

        Returns:
            List[Hypothesis]: The new running hypotheses.

        """
        logging.debug(f"the number of running hypotheses: {len(running_hyps)}")
        if self.token_list is not None:
            logging.debug(
                "best hypo: "
                + "".join([self.token_list[x] for x in running_hyps[0].yseq[1:]])
            )
        # add eos in the final loop to avoid that there are no ended hyps
        if i == maxlen - 1:
            logging.info("adding <eos> in the last position in the loop")
            running_hyps = [
                h._replace(yseq=self.append_token(h.yseq, self.eos))
                for h in running_hyps
            ]

        # add ended hypotheses to a final list, and removed them from current hypotheses
        # (this will be a problem, number of hyps < beam)
        remained_hyps = []
        for hyp in running_hyps:
            if hyp.yseq[-1] == self.eos:
                # e.g., Word LM needs to add final <eos> score
                for k, d in chain(self.full_scorers.items(), self.part_scorers.items()):
                    s = d.final_score(hyp.states[k])
                    hyp.scores[k] += s
                    hyp = hyp._replace(score=hyp.score + self.weights[k] * s)
                ended_hyps.append(hyp)
            else:
                remained_hyps.append(hyp)
        return remained_hyps