Spaces:
Running
Running
File size: 27,224 Bytes
67c46fd |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 |
#!/usr/bin/env python3
# -*- encoding: utf-8 -*-
# Copyright FunASR (https://github.com/alibaba-damo-academy/FunASR). All Rights Reserved.
# MIT License (https://opensource.org/licenses/MIT)
import time
import torch
import torch.nn as nn
import torch.functional as F
import logging
from typing import Dict, Tuple
from contextlib import contextmanager
from distutils.version import LooseVersion
from funasr_detach.register import tables
from funasr_detach.models.ctc.ctc import CTC
from funasr_detach.utils import postprocess_utils
from funasr_detach.metrics.compute_acc import th_accuracy
from funasr_detach.utils.datadir_writer import DatadirWriter
from funasr_detach.models.paraformer.model import Paraformer
from funasr_detach.models.paraformer.search import Hypothesis
from funasr_detach.models.paraformer.cif_predictor import mae_loss
from funasr_detach.train_utils.device_funcs import force_gatherable
from funasr_detach.losses.label_smoothing_loss import LabelSmoothingLoss
from funasr_detach.models.transformer.utils.add_sos_eos import add_sos_eos
from funasr_detach.models.transformer.utils.nets_utils import make_pad_mask, pad_list
from funasr_detach.utils.load_utils import load_audio_text_image_video, extract_fbank
from funasr_detach.models.scama.utils import sequence_mask
if LooseVersion(torch.__version__) >= LooseVersion("1.6.0"):
from torch.cuda.amp import autocast
else:
# Nothing to do if torch<1.6.0
@contextmanager
def autocast(enabled=True):
yield
@tables.register("model_classes", "SCAMA")
class SCAMA(nn.Module):
"""
Author: Shiliang Zhang, Zhifu Gao, Haoneng Luo, Ming Lei, Jie Gao, Zhijie Yan, Lei Xie
SCAMA: Streaming chunk-aware multihead attention for online end-to-end speech recognition
https://arxiv.org/abs/2006.01712
"""
def __init__(
self,
specaug: str = None,
specaug_conf: dict = None,
normalize: str = None,
normalize_conf: dict = None,
encoder: str = None,
encoder_conf: dict = None,
decoder: str = None,
decoder_conf: dict = None,
ctc: str = None,
ctc_conf: dict = None,
ctc_weight: float = 0.5,
predictor: str = None,
predictor_conf: dict = None,
predictor_bias: int = 0,
predictor_weight: float = 0.0,
input_size: int = 80,
vocab_size: int = -1,
ignore_id: int = -1,
blank_id: int = 0,
sos: int = 1,
eos: int = 2,
lsm_weight: float = 0.0,
length_normalized_loss: bool = False,
share_embedding: bool = False,
**kwargs,
):
super().__init__()
if specaug is not None:
specaug_class = tables.specaug_classes.get(specaug)
specaug = specaug_class(**specaug_conf)
if normalize is not None:
normalize_class = tables.normalize_classes.get(normalize)
normalize = normalize_class(**normalize_conf)
encoder_class = tables.encoder_classes.get(encoder)
encoder = encoder_class(input_size=input_size, **encoder_conf)
encoder_output_size = encoder.output_size()
decoder_class = tables.decoder_classes.get(decoder)
decoder = decoder_class(
vocab_size=vocab_size,
encoder_output_size=encoder_output_size,
**decoder_conf,
)
if ctc_weight > 0.0:
if ctc_conf is None:
ctc_conf = {}
ctc = CTC(
odim=vocab_size, encoder_output_size=encoder_output_size, **ctc_conf
)
predictor_class = tables.predictor_classes.get(predictor)
predictor = predictor_class(**predictor_conf)
# note that eos is the same as sos (equivalent ID)
self.blank_id = blank_id
self.sos = sos if sos is not None else vocab_size - 1
self.eos = eos if eos is not None else vocab_size - 1
self.vocab_size = vocab_size
self.ignore_id = ignore_id
self.ctc_weight = ctc_weight
self.specaug = specaug
self.normalize = normalize
self.encoder = encoder
if ctc_weight == 1.0:
self.decoder = None
else:
self.decoder = decoder
self.criterion_att = LabelSmoothingLoss(
size=vocab_size,
padding_idx=ignore_id,
smoothing=lsm_weight,
normalize_length=length_normalized_loss,
)
if ctc_weight == 0.0:
self.ctc = None
else:
self.ctc = ctc
self.predictor = predictor
self.predictor_weight = predictor_weight
self.predictor_bias = predictor_bias
self.criterion_pre = mae_loss(normalize_length=length_normalized_loss)
self.share_embedding = share_embedding
if self.share_embedding:
self.decoder.embed = None
self.length_normalized_loss = length_normalized_loss
self.beam_search = None
self.error_calculator = None
if self.encoder.overlap_chunk_cls is not None:
from funasr_detach.models.scama.chunk_utilis import (
build_scama_mask_for_cross_attention_decoder,
)
self.build_scama_mask_for_cross_attention_decoder_fn = (
build_scama_mask_for_cross_attention_decoder
)
self.decoder_attention_chunk_type = kwargs.get(
"decoder_attention_chunk_type", "chunk"
)
def forward(
self,
speech: torch.Tensor,
speech_lengths: torch.Tensor,
text: torch.Tensor,
text_lengths: torch.Tensor,
**kwargs,
) -> Tuple[torch.Tensor, Dict[str, torch.Tensor], torch.Tensor]:
"""Encoder + Decoder + Calc loss
Args:
speech: (Batch, Length, ...)
speech_lengths: (Batch, )
text: (Batch, Length)
text_lengths: (Batch,)
"""
decoding_ind = kwargs.get("decoding_ind")
if len(text_lengths.size()) > 1:
text_lengths = text_lengths[:, 0]
if len(speech_lengths.size()) > 1:
speech_lengths = speech_lengths[:, 0]
batch_size = speech.shape[0]
# Encoder
ind = self.encoder.overlap_chunk_cls.random_choice(self.training, decoding_ind)
encoder_out, encoder_out_lens = self.encode(speech, speech_lengths, ind=ind)
loss_ctc, cer_ctc = None, None
loss_pre = None
stats = dict()
# decoder: CTC branch
if self.ctc_weight > 0.0:
encoder_out_ctc, encoder_out_lens_ctc = (
self.encoder.overlap_chunk_cls.remove_chunk(
encoder_out, encoder_out_lens, chunk_outs=None
)
)
loss_ctc, cer_ctc = self._calc_ctc_loss(
encoder_out_ctc, encoder_out_lens_ctc, text, text_lengths
)
# Collect CTC branch stats
stats["loss_ctc"] = loss_ctc.detach() if loss_ctc is not None else None
stats["cer_ctc"] = cer_ctc
# decoder: Attention decoder branch
loss_att, acc_att, cer_att, wer_att, loss_pre = self._calc_att_predictor_loss(
encoder_out, encoder_out_lens, text, text_lengths
)
# 3. CTC-Att loss definition
if self.ctc_weight == 0.0:
loss = loss_att + loss_pre * self.predictor_weight
else:
loss = (
self.ctc_weight * loss_ctc
+ (1 - self.ctc_weight) * loss_att
+ loss_pre * self.predictor_weight
)
# Collect Attn branch stats
stats["loss_att"] = loss_att.detach() if loss_att is not None else None
stats["acc"] = acc_att
stats["cer"] = cer_att
stats["wer"] = wer_att
stats["loss_pre"] = loss_pre.detach().cpu() if loss_pre is not None else None
stats["loss"] = torch.clone(loss.detach())
# force_gatherable: to-device and to-tensor if scalar for DataParallel
if self.length_normalized_loss:
batch_size = (text_lengths + self.predictor_bias).sum()
loss, stats, weight = force_gatherable((loss, stats, batch_size), loss.device)
return loss, stats, weight
def encode(
self,
speech: torch.Tensor,
speech_lengths: torch.Tensor,
**kwargs,
) -> Tuple[torch.Tensor, torch.Tensor]:
"""Encoder. Note that this method is used by asr_inference.py
Args:
speech: (Batch, Length, ...)
speech_lengths: (Batch, )
ind: int
"""
with autocast(False):
# Data augmentation
if self.specaug is not None and self.training:
speech, speech_lengths = self.specaug(speech, speech_lengths)
# Normalization for feature: e.g. Global-CMVN, Utterance-CMVN
if self.normalize is not None:
speech, speech_lengths = self.normalize(speech, speech_lengths)
# Forward encoder
encoder_out, encoder_out_lens, _ = self.encoder(speech, speech_lengths)
if isinstance(encoder_out, tuple):
encoder_out = encoder_out[0]
return encoder_out, encoder_out_lens
def encode_chunk(
self,
speech: torch.Tensor,
speech_lengths: torch.Tensor,
cache: dict = None,
**kwargs,
) -> Tuple[torch.Tensor, torch.Tensor]:
"""Frontend + Encoder. Note that this method is used by asr_inference.py
Args:
speech: (Batch, Length, ...)
speech_lengths: (Batch, )
ind: int
"""
with autocast(False):
# Data augmentation
if self.specaug is not None and self.training:
speech, speech_lengths = self.specaug(speech, speech_lengths)
# Normalization for feature: e.g. Global-CMVN, Utterance-CMVN
if self.normalize is not None:
speech, speech_lengths = self.normalize(speech, speech_lengths)
# Forward encoder
encoder_out, encoder_out_lens, _ = self.encoder.forward_chunk(
speech, speech_lengths, cache=cache["encoder"]
)
if isinstance(encoder_out, tuple):
encoder_out = encoder_out[0]
return encoder_out, torch.tensor([encoder_out.size(1)])
def calc_predictor_chunk(self, encoder_out, encoder_out_lens, cache=None, **kwargs):
is_final = kwargs.get("is_final", False)
return self.predictor.forward_chunk(
encoder_out, cache["encoder"], is_final=is_final
)
def _calc_att_predictor_loss(
self,
encoder_out: torch.Tensor,
encoder_out_lens: torch.Tensor,
ys_pad: torch.Tensor,
ys_pad_lens: torch.Tensor,
):
ys_in_pad, ys_out_pad = add_sos_eos(ys_pad, self.sos, self.eos, self.ignore_id)
ys_in_lens = ys_pad_lens + 1
encoder_out_mask = sequence_mask(
encoder_out_lens,
maxlen=encoder_out.size(1),
dtype=encoder_out.dtype,
device=encoder_out.device,
)[:, None, :]
mask_chunk_predictor = None
if self.encoder.overlap_chunk_cls is not None:
mask_chunk_predictor = (
self.encoder.overlap_chunk_cls.get_mask_chunk_predictor(
None, device=encoder_out.device, batch_size=encoder_out.size(0)
)
)
mask_shfit_chunk = self.encoder.overlap_chunk_cls.get_mask_shfit_chunk(
None, device=encoder_out.device, batch_size=encoder_out.size(0)
)
encoder_out = encoder_out * mask_shfit_chunk
pre_acoustic_embeds, pre_token_length, pre_alphas, _ = self.predictor(
encoder_out,
ys_out_pad,
encoder_out_mask,
ignore_id=self.ignore_id,
mask_chunk_predictor=mask_chunk_predictor,
target_label_length=ys_in_lens,
)
predictor_alignments, predictor_alignments_len = (
self.predictor.gen_frame_alignments(pre_alphas, encoder_out_lens)
)
encoder_chunk_size = self.encoder.overlap_chunk_cls.chunk_size_pad_shift_cur
attention_chunk_center_bias = 0
attention_chunk_size = encoder_chunk_size
decoder_att_look_back_factor = (
self.encoder.overlap_chunk_cls.decoder_att_look_back_factor_cur
)
mask_shift_att_chunk_decoder = (
self.encoder.overlap_chunk_cls.get_mask_shift_att_chunk_decoder(
None, device=encoder_out.device, batch_size=encoder_out.size(0)
)
)
scama_mask = self.build_scama_mask_for_cross_attention_decoder_fn(
predictor_alignments=predictor_alignments,
encoder_sequence_length=encoder_out_lens,
chunk_size=1,
encoder_chunk_size=encoder_chunk_size,
attention_chunk_center_bias=attention_chunk_center_bias,
attention_chunk_size=attention_chunk_size,
attention_chunk_type=self.decoder_attention_chunk_type,
step=None,
predictor_mask_chunk_hopping=mask_chunk_predictor,
decoder_att_look_back_factor=decoder_att_look_back_factor,
mask_shift_att_chunk_decoder=mask_shift_att_chunk_decoder,
target_length=ys_in_lens,
is_training=self.training,
)
# try:
# 1. Forward decoder
decoder_out, _ = self.decoder(
encoder_out,
encoder_out_lens,
ys_in_pad,
ys_in_lens,
chunk_mask=scama_mask,
pre_acoustic_embeds=pre_acoustic_embeds,
)
# 2. Compute attention loss
loss_att = self.criterion_att(decoder_out, ys_out_pad)
acc_att = th_accuracy(
decoder_out.view(-1, self.vocab_size),
ys_out_pad,
ignore_label=self.ignore_id,
)
# predictor loss
loss_pre = self.criterion_pre(
ys_in_lens.type_as(pre_token_length), pre_token_length
)
# Compute cer/wer using attention-decoder
if self.training or self.error_calculator is None:
cer_att, wer_att = None, None
else:
ys_hat = decoder_out.argmax(dim=-1)
cer_att, wer_att = self.error_calculator(ys_hat.cpu(), ys_pad.cpu())
return loss_att, acc_att, cer_att, wer_att, loss_pre
def calc_predictor_mask(
self,
encoder_out: torch.Tensor,
encoder_out_lens: torch.Tensor,
ys_pad: torch.Tensor = None,
ys_pad_lens: torch.Tensor = None,
):
# ys_in_pad, ys_out_pad = add_sos_eos(ys_pad, self.sos, self.eos, self.ignore_id)
# ys_in_lens = ys_pad_lens + 1
ys_out_pad, ys_in_lens = None, None
encoder_out_mask = sequence_mask(
encoder_out_lens,
maxlen=encoder_out.size(1),
dtype=encoder_out.dtype,
device=encoder_out.device,
)[:, None, :]
mask_chunk_predictor = None
mask_chunk_predictor = self.encoder.overlap_chunk_cls.get_mask_chunk_predictor(
None, device=encoder_out.device, batch_size=encoder_out.size(0)
)
mask_shfit_chunk = self.encoder.overlap_chunk_cls.get_mask_shfit_chunk(
None, device=encoder_out.device, batch_size=encoder_out.size(0)
)
encoder_out = encoder_out * mask_shfit_chunk
pre_acoustic_embeds, pre_token_length, pre_alphas, _ = self.predictor(
encoder_out,
ys_out_pad,
encoder_out_mask,
ignore_id=self.ignore_id,
mask_chunk_predictor=mask_chunk_predictor,
target_label_length=ys_in_lens,
)
predictor_alignments, predictor_alignments_len = (
self.predictor.gen_frame_alignments(pre_alphas, encoder_out_lens)
)
encoder_chunk_size = self.encoder.overlap_chunk_cls.chunk_size_pad_shift_cur
attention_chunk_center_bias = 0
attention_chunk_size = encoder_chunk_size
decoder_att_look_back_factor = (
self.encoder.overlap_chunk_cls.decoder_att_look_back_factor_cur
)
mask_shift_att_chunk_decoder = (
self.encoder.overlap_chunk_cls.get_mask_shift_att_chunk_decoder(
None, device=encoder_out.device, batch_size=encoder_out.size(0)
)
)
scama_mask = self.build_scama_mask_for_cross_attention_decoder_fn(
predictor_alignments=predictor_alignments,
encoder_sequence_length=encoder_out_lens,
chunk_size=1,
encoder_chunk_size=encoder_chunk_size,
attention_chunk_center_bias=attention_chunk_center_bias,
attention_chunk_size=attention_chunk_size,
attention_chunk_type=self.decoder_attention_chunk_type,
step=None,
predictor_mask_chunk_hopping=mask_chunk_predictor,
decoder_att_look_back_factor=decoder_att_look_back_factor,
mask_shift_att_chunk_decoder=mask_shift_att_chunk_decoder,
target_length=ys_in_lens,
is_training=self.training,
)
return (
pre_acoustic_embeds,
pre_token_length,
predictor_alignments,
predictor_alignments_len,
scama_mask,
)
def init_beam_search(
self,
**kwargs,
):
from funasr_detach.models.scama.beam_search import BeamSearchScamaStreaming
from funasr_detach.models.transformer.scorers.ctc import CTCPrefixScorer
from funasr_detach.models.transformer.scorers.length_bonus import LengthBonus
# 1. Build ASR model
scorers = {}
if self.ctc != None:
ctc = CTCPrefixScorer(ctc=self.ctc, eos=self.eos)
scorers.update(ctc=ctc)
token_list = kwargs.get("token_list")
scorers.update(
decoder=self.decoder,
length_bonus=LengthBonus(len(token_list)),
)
# 3. Build ngram model
# ngram is not supported now
ngram = None
scorers["ngram"] = ngram
weights = dict(
decoder=1.0 - kwargs.get("decoding_ctc_weight", 0.0),
ctc=kwargs.get("decoding_ctc_weight", 0.0),
lm=kwargs.get("lm_weight", 0.0),
ngram=kwargs.get("ngram_weight", 0.0),
length_bonus=kwargs.get("penalty", 0.0),
)
beam_search = BeamSearchScamaStreaming(
beam_size=kwargs.get("beam_size", 2),
weights=weights,
scorers=scorers,
sos=self.sos,
eos=self.eos,
vocab_size=len(token_list),
token_list=token_list,
pre_beam_score_key=None if self.ctc_weight == 1.0 else "full",
)
# beam_search.to(device=kwargs.get("device", "cpu"), dtype=getattr(torch, kwargs.get("dtype", "float32"))).eval()
# for scorer in scorers.values():
# if isinstance(scorer, torch.nn.Module):
# scorer.to(device=kwargs.get("device", "cpu"), dtype=getattr(torch, kwargs.get("dtype", "float32"))).eval()
self.beam_search = beam_search
def generate_chunk(
self,
speech,
speech_lengths=None,
key: list = None,
tokenizer=None,
frontend=None,
**kwargs,
):
cache = kwargs.get("cache", {})
speech = speech.to(device=kwargs["device"])
speech_lengths = speech_lengths.to(device=kwargs["device"])
# Encoder
encoder_out, encoder_out_lens = self.encode_chunk(
speech, speech_lengths, cache=cache, is_final=kwargs.get("is_final", False)
)
if isinstance(encoder_out, tuple):
encoder_out = encoder_out[0]
if "running_hyps" not in cache:
running_hyps = self.beam_search.init_hyp(encoder_out)
cache["running_hyps"] = running_hyps
# predictor
predictor_outs = self.calc_predictor_chunk(
encoder_out,
encoder_out_lens,
cache=cache,
is_final=kwargs.get("is_final", False),
)
pre_acoustic_embeds, pre_token_length, alphas, pre_peak_index = (
predictor_outs[0],
predictor_outs[1],
predictor_outs[2],
predictor_outs[3],
)
pre_token_length = pre_token_length.round().long()
if torch.max(pre_token_length) < 1:
return []
maxlen = minlen = pre_token_length
if kwargs.get("is_final", False):
maxlen += kwargs.get("token_num_relax", 5)
minlen = max(0, minlen - kwargs.get("token_num_relax", 5))
# c. Passed the encoder result and the beam search
nbest_hyps = self.beam_search(
x=encoder_out[0],
scama_mask=None,
pre_acoustic_embeds=pre_acoustic_embeds,
maxlen=int(maxlen),
minlen=int(minlen),
cache=cache,
)
cache["running_hyps"] = nbest_hyps
nbest_hyps = nbest_hyps[: self.nbest]
results = []
for hyp in nbest_hyps:
# assert isinstance(hyp, (Hypothesis)), type(hyp)
# remove sos/eos and get results
last_pos = -1
if isinstance(hyp.yseq, list):
token_int = hyp.yseq[1:last_pos]
else:
token_int = hyp.yseq[1:last_pos].tolist()
# remove blank symbol id, which is assumed to be 0
token_int = list(
filter(
lambda x: x != self.eos
and x != self.sos
and x != self.blank_id,
token_int,
)
)
# Change integer-ids to tokens
token = tokenizer.ids2tokens(token_int)
# text = tokenizer.tokens2text(token)
result_i = token
results.extend(result_i)
return results
def init_cache(self, cache: dict = {}, **kwargs):
device = kwargs.get("device", "cuda")
chunk_size = kwargs.get("chunk_size", [0, 10, 5])
encoder_chunk_look_back = kwargs.get("encoder_chunk_look_back", 0)
decoder_chunk_look_back = kwargs.get("decoder_chunk_look_back", 0)
batch_size = 1
enc_output_size = kwargs["encoder_conf"]["output_size"]
feats_dims = (
kwargs["frontend_conf"]["n_mels"] * kwargs["frontend_conf"]["lfr_m"]
)
cache_encoder = {
"start_idx": 0,
"cif_hidden": torch.zeros((batch_size, 1, enc_output_size)).to(
device=device
),
"cif_alphas": torch.zeros((batch_size, 1)).to(device=device),
"chunk_size": chunk_size,
"encoder_chunk_look_back": encoder_chunk_look_back,
"last_chunk": False,
"opt": None,
"feats": torch.zeros(
(batch_size, chunk_size[0] + chunk_size[2], feats_dims)
).to(device=device),
"tail_chunk": False,
}
cache["encoder"] = cache_encoder
cache_decoder = {
"decode_fsmn": None,
"decoder_chunk_look_back": decoder_chunk_look_back,
"opt": None,
"chunk_size": chunk_size,
}
cache["decoder"] = cache_decoder
cache["frontend"] = {}
cache["prev_samples"] = torch.empty(0).to(device=device)
return cache
def inference(
self,
data_in,
data_lengths=None,
key: list = None,
tokenizer=None,
frontend=None,
cache: dict = {},
**kwargs,
):
# init beamsearch
is_use_ctc = (
kwargs.get("decoding_ctc_weight", 0.0) > 0.00001 and self.ctc != None
)
is_use_lm = (
kwargs.get("lm_weight", 0.0) > 0.00001
and kwargs.get("lm_file", None) is not None
)
if self.beam_search is None:
logging.info("enable beam_search")
self.init_beam_search(**kwargs)
self.nbest = kwargs.get("nbest", 1)
if len(cache) == 0:
self.init_cache(cache, **kwargs)
meta_data = {}
chunk_size = kwargs.get("chunk_size", [0, 10, 5])
chunk_stride_samples = int(chunk_size[1] * 960) # 600ms
time1 = time.perf_counter()
cfg = {"is_final": kwargs.get("is_final", False)}
audio_sample_list = load_audio_text_image_video(
data_in,
fs=frontend.fs,
audio_fs=kwargs.get("fs", 16000),
data_type=kwargs.get("data_type", "sound"),
tokenizer=tokenizer,
cache=cfg,
)
_is_final = cfg["is_final"] # if data_in is a file or url, set is_final=True
time2 = time.perf_counter()
meta_data["load_data"] = f"{time2 - time1:0.3f}"
assert len(audio_sample_list) == 1, "batch_size must be set 1"
audio_sample = torch.cat((cache["prev_samples"], audio_sample_list[0]))
n = int(len(audio_sample) // chunk_stride_samples + int(_is_final))
m = int(len(audio_sample) % chunk_stride_samples * (1 - int(_is_final)))
tokens = []
for i in range(n):
kwargs["is_final"] = _is_final and i == n - 1
audio_sample_i = audio_sample[
i * chunk_stride_samples : (i + 1) * chunk_stride_samples
]
# extract fbank feats
speech, speech_lengths = extract_fbank(
[audio_sample_i],
data_type=kwargs.get("data_type", "sound"),
frontend=frontend,
cache=cache["frontend"],
is_final=kwargs["is_final"],
)
time3 = time.perf_counter()
meta_data["extract_feat"] = f"{time3 - time2:0.3f}"
meta_data["batch_data_time"] = (
speech_lengths.sum().item()
* frontend.frame_shift
* frontend.lfr_n
/ 1000
)
tokens_i = self.generate_chunk(
speech,
speech_lengths,
key=key,
tokenizer=tokenizer,
cache=cache,
frontend=frontend,
**kwargs,
)
tokens.extend(tokens_i)
text_postprocessed, _ = postprocess_utils.sentence_postprocess(tokens)
result_i = {"key": key[0], "text": text_postprocessed}
result = [result_i]
cache["prev_samples"] = audio_sample[:-m]
if _is_final:
self.init_cache(cache, **kwargs)
if kwargs.get("output_dir"):
writer = DatadirWriter(kwargs.get("output_dir"))
ibest_writer = writer[f"{1}best_recog"]
ibest_writer["token"][key[0]] = " ".join(tokens)
ibest_writer["text"][key[0]] = text_postprocessed
return result, meta_data
|