File size: 10,334 Bytes
67c46fd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
import math
import torch
from typing import Sequence
from typing import Union


def mask_along_axis(
    spec: torch.Tensor,
    spec_lengths: torch.Tensor,
    mask_width_range: Sequence[int] = (0, 30),
    dim: int = 1,
    num_mask: int = 2,
    replace_with_zero: bool = True,
):
    """Apply mask along the specified direction.

    Args:
        spec: (Batch, Length, Freq)
        spec_lengths: (Length): Not using lengths in this implementation
        mask_width_range: Select the width randomly between this range
    """

    org_size = spec.size()
    if spec.dim() == 4:
        # spec: (Batch, Channel, Length, Freq) -> (Batch * Channel, Length, Freq)
        spec = spec.view(-1, spec.size(2), spec.size(3))

    B = spec.shape[0]
    # D = Length or Freq
    D = spec.shape[dim]
    # mask_length: (B, num_mask, 1)
    mask_length = torch.randint(
        mask_width_range[0],
        mask_width_range[1],
        (B, num_mask),
        device=spec.device,
    ).unsqueeze(2)

    # mask_pos: (B, num_mask, 1)
    mask_pos = torch.randint(
        0, max(1, D - mask_length.max()), (B, num_mask), device=spec.device
    ).unsqueeze(2)

    # aran: (1, 1, D)
    aran = torch.arange(D, device=spec.device)[None, None, :]
    # mask: (Batch, num_mask, D)
    mask = (mask_pos <= aran) * (aran < (mask_pos + mask_length))
    # Multiply masks: (Batch, num_mask, D) -> (Batch, D)
    mask = mask.any(dim=1)
    if dim == 1:
        # mask: (Batch, Length, 1)
        mask = mask.unsqueeze(2)
    elif dim == 2:
        # mask: (Batch, 1, Freq)
        mask = mask.unsqueeze(1)

    if replace_with_zero:
        value = 0.0
    else:
        value = spec.mean()

    if spec.requires_grad:
        spec = spec.masked_fill(mask, value)
    else:
        spec = spec.masked_fill_(mask, value)
    spec = spec.view(*org_size)
    return spec, spec_lengths


def mask_along_axis_lfr(
    spec: torch.Tensor,
    spec_lengths: torch.Tensor,
    mask_width_range: Sequence[int] = (0, 30),
    dim: int = 1,
    num_mask: int = 2,
    replace_with_zero: bool = True,
    lfr_rate: int = 1,
):
    """Apply mask along the specified direction.

    Args:
        spec: (Batch, Length, Freq)
        spec_lengths: (Length): Not using lengths in this implementation
        mask_width_range: Select the width randomly between this range
        lfr_rate:low frame rate
    """

    org_size = spec.size()
    if spec.dim() == 4:
        # spec: (Batch, Channel, Length, Freq) -> (Batch * Channel, Length, Freq)
        spec = spec.view(-1, spec.size(2), spec.size(3))

    B = spec.shape[0]
    # D = Length or Freq
    D = spec.shape[dim] // lfr_rate
    # mask_length: (B, num_mask, 1)
    mask_length = torch.randint(
        mask_width_range[0],
        mask_width_range[1],
        (B, num_mask),
        device=spec.device,
    ).unsqueeze(2)
    if lfr_rate > 1:
        mask_length = mask_length.repeat(1, lfr_rate, 1)
    # mask_pos: (B, num_mask, 1)
    mask_pos = torch.randint(
        0, max(1, D - mask_length.max()), (B, num_mask), device=spec.device
    ).unsqueeze(2)
    if lfr_rate > 1:
        mask_pos_raw = mask_pos.clone()
        mask_pos = torch.zeros((B, 0, 1), device=spec.device, dtype=torch.int32)
        for i in range(lfr_rate):
            mask_pos_i = mask_pos_raw + D * i
            mask_pos = torch.cat((mask_pos, mask_pos_i), dim=1)
    # aran: (1, 1, D)
    D = spec.shape[dim]
    aran = torch.arange(D, device=spec.device)[None, None, :]
    # mask: (Batch, num_mask, D)
    mask = (mask_pos <= aran) * (aran < (mask_pos + mask_length))
    # Multiply masks: (Batch, num_mask, D) -> (Batch, D)
    mask = mask.any(dim=1)
    if dim == 1:
        # mask: (Batch, Length, 1)
        mask = mask.unsqueeze(2)
    elif dim == 2:
        # mask: (Batch, 1, Freq)
        mask = mask.unsqueeze(1)

    if replace_with_zero:
        value = 0.0
    else:
        value = spec.mean()

    if spec.requires_grad:
        spec = spec.masked_fill(mask, value)
    else:
        spec = spec.masked_fill_(mask, value)
    spec = spec.view(*org_size)
    return spec, spec_lengths


class MaskAlongAxis(torch.nn.Module):
    def __init__(
        self,
        mask_width_range: Union[int, Sequence[int]] = (0, 30),
        num_mask: int = 2,
        dim: Union[int, str] = "time",
        replace_with_zero: bool = True,
    ):
        if isinstance(mask_width_range, int):
            mask_width_range = (0, mask_width_range)
        if len(mask_width_range) != 2:
            raise TypeError(
                f"mask_width_range must be a tuple of int and int values: "
                f"{mask_width_range}",
            )

        assert mask_width_range[1] > mask_width_range[0]
        if isinstance(dim, str):
            if dim == "time":
                dim = 1
            elif dim == "freq":
                dim = 2
            else:
                raise ValueError("dim must be int, 'time' or 'freq'")
        if dim == 1:
            self.mask_axis = "time"
        elif dim == 2:
            self.mask_axis = "freq"
        else:
            self.mask_axis = "unknown"

        super().__init__()
        self.mask_width_range = mask_width_range
        self.num_mask = num_mask
        self.dim = dim
        self.replace_with_zero = replace_with_zero

    def extra_repr(self):
        return (
            f"mask_width_range={self.mask_width_range}, "
            f"num_mask={self.num_mask}, axis={self.mask_axis}"
        )

    def forward(self, spec: torch.Tensor, spec_lengths: torch.Tensor = None):
        """Forward function.

        Args:
            spec: (Batch, Length, Freq)
        """

        return mask_along_axis(
            spec,
            spec_lengths,
            mask_width_range=self.mask_width_range,
            dim=self.dim,
            num_mask=self.num_mask,
            replace_with_zero=self.replace_with_zero,
        )


class MaskAlongAxisVariableMaxWidth(torch.nn.Module):
    """Mask input spec along a specified axis with variable maximum width.

    Formula:
        max_width = max_width_ratio * seq_len
    """

    def __init__(
        self,
        mask_width_ratio_range: Union[float, Sequence[float]] = (0.0, 0.05),
        num_mask: int = 2,
        dim: Union[int, str] = "time",
        replace_with_zero: bool = True,
    ):
        if isinstance(mask_width_ratio_range, float):
            mask_width_ratio_range = (0.0, mask_width_ratio_range)
        if len(mask_width_ratio_range) != 2:
            raise TypeError(
                f"mask_width_ratio_range must be a tuple of float and float values: "
                f"{mask_width_ratio_range}",
            )

        assert mask_width_ratio_range[1] > mask_width_ratio_range[0]
        if isinstance(dim, str):
            if dim == "time":
                dim = 1
            elif dim == "freq":
                dim = 2
            else:
                raise ValueError("dim must be int, 'time' or 'freq'")
        if dim == 1:
            self.mask_axis = "time"
        elif dim == 2:
            self.mask_axis = "freq"
        else:
            self.mask_axis = "unknown"

        super().__init__()
        self.mask_width_ratio_range = mask_width_ratio_range
        self.num_mask = num_mask
        self.dim = dim
        self.replace_with_zero = replace_with_zero

    def extra_repr(self):
        return (
            f"mask_width_ratio_range={self.mask_width_ratio_range}, "
            f"num_mask={self.num_mask}, axis={self.mask_axis}"
        )

    def forward(self, spec: torch.Tensor, spec_lengths: torch.Tensor = None):
        """Forward function.

        Args:
            spec: (Batch, Length, Freq)
        """

        max_seq_len = spec.shape[self.dim]
        min_mask_width = math.floor(max_seq_len * self.mask_width_ratio_range[0])
        min_mask_width = max([0, min_mask_width])
        max_mask_width = math.floor(max_seq_len * self.mask_width_ratio_range[1])
        max_mask_width = min([max_seq_len, max_mask_width])

        if max_mask_width > min_mask_width:
            return mask_along_axis(
                spec,
                spec_lengths,
                mask_width_range=(min_mask_width, max_mask_width),
                dim=self.dim,
                num_mask=self.num_mask,
                replace_with_zero=self.replace_with_zero,
            )
        return spec, spec_lengths


class MaskAlongAxisLFR(torch.nn.Module):
    def __init__(
        self,
        mask_width_range: Union[int, Sequence[int]] = (0, 30),
        num_mask: int = 2,
        dim: Union[int, str] = "time",
        replace_with_zero: bool = True,
        lfr_rate: int = 1,
    ):
        if isinstance(mask_width_range, int):
            mask_width_range = (0, mask_width_range)
        if len(mask_width_range) != 2:
            raise TypeError(
                f"mask_width_range must be a tuple of int and int values: "
                f"{mask_width_range}",
            )

        assert mask_width_range[1] > mask_width_range[0]
        if isinstance(dim, str):
            if dim == "time":
                dim = 1
                lfr_rate = 1
            elif dim == "freq":
                dim = 2
            else:
                raise ValueError("dim must be int, 'time' or 'freq'")
        if dim == 1:
            self.mask_axis = "time"
            lfr_rate = 1
        elif dim == 2:
            self.mask_axis = "freq"
        else:
            self.mask_axis = "unknown"

        super().__init__()
        self.mask_width_range = mask_width_range
        self.num_mask = num_mask
        self.dim = dim
        self.replace_with_zero = replace_with_zero
        self.lfr_rate = lfr_rate

    def extra_repr(self):
        return (
            f"mask_width_range={self.mask_width_range}, "
            f"num_mask={self.num_mask}, axis={self.mask_axis}"
        )

    def forward(self, spec: torch.Tensor, spec_lengths: torch.Tensor = None):
        """Forward function.

        Args:
            spec: (Batch, Length, Freq)
        """

        return mask_along_axis_lfr(
            spec,
            spec_lengths,
            mask_width_range=self.mask_width_range,
            dim=self.dim,
            num_mask=self.num_mask,
            replace_with_zero=self.replace_with_zero,
            lfr_rate=self.lfr_rate,
        )