Spaces:
Running
Running
File size: 24,368 Bytes
67c46fd |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 |
# Copyright 2019 Shigeki Karita
# Apache 2.0 (http://www.apache.org/licenses/LICENSE-2.0)
"""Decoder definition."""
from typing import Any
from typing import List
from typing import Sequence
from typing import Tuple
import torch
from torch import nn
from funasr_detach.models.transformer.attention import MultiHeadedAttention
from funasr_detach.models.transformer.utils.dynamic_conv import DynamicConvolution
from funasr_detach.models.transformer.utils.dynamic_conv2d import DynamicConvolution2D
from funasr_detach.models.transformer.embedding import PositionalEncoding
from funasr_detach.models.transformer.layer_norm import LayerNorm
from funasr_detach.models.transformer.utils.lightconv import LightweightConvolution
from funasr_detach.models.transformer.utils.lightconv2d import LightweightConvolution2D
from funasr_detach.models.transformer.utils.mask import subsequent_mask
from funasr_detach.models.transformer.utils.nets_utils import make_pad_mask
from funasr_detach.models.transformer.positionwise_feed_forward import (
PositionwiseFeedForward, # noqa: H301
)
from funasr_detach.models.transformer.utils.repeat import repeat
from funasr_detach.models.transformer.scorers.scorer_interface import (
BatchScorerInterface,
)
from funasr_detach.register import tables
class DecoderLayer(nn.Module):
"""Single decoder layer module.
Args:
size (int): Input dimension.
self_attn (torch.nn.Module): Self-attention module instance.
`MultiHeadedAttention` instance can be used as the argument.
src_attn (torch.nn.Module): Self-attention module instance.
`MultiHeadedAttention` instance can be used as the argument.
feed_forward (torch.nn.Module): Feed-forward module instance.
`PositionwiseFeedForward`, `MultiLayeredConv1d`, or `Conv1dLinear` instance
can be used as the argument.
dropout_rate (float): Dropout rate.
normalize_before (bool): Whether to use layer_norm before the first block.
concat_after (bool): Whether to concat attention layer's input and output.
if True, additional linear will be applied.
i.e. x -> x + linear(concat(x, att(x)))
if False, no additional linear will be applied. i.e. x -> x + att(x)
"""
def __init__(
self,
size,
self_attn,
src_attn,
feed_forward,
dropout_rate,
normalize_before=True,
concat_after=False,
):
"""Construct an DecoderLayer object."""
super(DecoderLayer, self).__init__()
self.size = size
self.self_attn = self_attn
self.src_attn = src_attn
self.feed_forward = feed_forward
self.norm1 = LayerNorm(size)
self.norm2 = LayerNorm(size)
self.norm3 = LayerNorm(size)
self.dropout = nn.Dropout(dropout_rate)
self.normalize_before = normalize_before
self.concat_after = concat_after
if self.concat_after:
self.concat_linear1 = nn.Linear(size + size, size)
self.concat_linear2 = nn.Linear(size + size, size)
def forward(self, tgt, tgt_mask, memory, memory_mask, cache=None):
"""Compute decoded features.
Args:
tgt (torch.Tensor): Input tensor (#batch, maxlen_out, size).
tgt_mask (torch.Tensor): Mask for input tensor (#batch, maxlen_out).
memory (torch.Tensor): Encoded memory, float32 (#batch, maxlen_in, size).
memory_mask (torch.Tensor): Encoded memory mask (#batch, maxlen_in).
cache (List[torch.Tensor]): List of cached tensors.
Each tensor shape should be (#batch, maxlen_out - 1, size).
Returns:
torch.Tensor: Output tensor(#batch, maxlen_out, size).
torch.Tensor: Mask for output tensor (#batch, maxlen_out).
torch.Tensor: Encoded memory (#batch, maxlen_in, size).
torch.Tensor: Encoded memory mask (#batch, maxlen_in).
"""
residual = tgt
if self.normalize_before:
tgt = self.norm1(tgt)
if cache is None:
tgt_q = tgt
tgt_q_mask = tgt_mask
else:
# compute only the last frame query keeping dim: max_time_out -> 1
assert cache.shape == (
tgt.shape[0],
tgt.shape[1] - 1,
self.size,
), f"{cache.shape} == {(tgt.shape[0], tgt.shape[1] - 1, self.size)}"
tgt_q = tgt[:, -1:, :]
residual = residual[:, -1:, :]
tgt_q_mask = None
if tgt_mask is not None:
tgt_q_mask = tgt_mask[:, -1:, :]
if self.concat_after:
tgt_concat = torch.cat(
(tgt_q, self.self_attn(tgt_q, tgt, tgt, tgt_q_mask)), dim=-1
)
x = residual + self.concat_linear1(tgt_concat)
else:
x = residual + self.dropout(self.self_attn(tgt_q, tgt, tgt, tgt_q_mask))
if not self.normalize_before:
x = self.norm1(x)
residual = x
if self.normalize_before:
x = self.norm2(x)
if self.concat_after:
x_concat = torch.cat(
(x, self.src_attn(x, memory, memory, memory_mask)), dim=-1
)
x = residual + self.concat_linear2(x_concat)
else:
x = residual + self.dropout(self.src_attn(x, memory, memory, memory_mask))
if not self.normalize_before:
x = self.norm2(x)
residual = x
if self.normalize_before:
x = self.norm3(x)
x = residual + self.dropout(self.feed_forward(x))
if not self.normalize_before:
x = self.norm3(x)
if cache is not None:
x = torch.cat([cache, x], dim=1)
return x, tgt_mask, memory, memory_mask
class BaseTransformerDecoder(nn.Module, BatchScorerInterface):
"""Base class of Transfomer decoder module.
Args:
vocab_size: output dim
encoder_output_size: dimension of attention
attention_heads: the number of heads of multi head attention
linear_units: the number of units of position-wise feed forward
num_blocks: the number of decoder blocks
dropout_rate: dropout rate
self_attention_dropout_rate: dropout rate for attention
input_layer: input layer type
use_output_layer: whether to use output layer
pos_enc_class: PositionalEncoding or ScaledPositionalEncoding
normalize_before: whether to use layer_norm before the first block
concat_after: whether to concat attention layer's input and output
if True, additional linear will be applied.
i.e. x -> x + linear(concat(x, att(x)))
if False, no additional linear will be applied.
i.e. x -> x + att(x)
"""
def __init__(
self,
vocab_size: int,
encoder_output_size: int,
dropout_rate: float = 0.1,
positional_dropout_rate: float = 0.1,
input_layer: str = "embed",
use_output_layer: bool = True,
pos_enc_class=PositionalEncoding,
normalize_before: bool = True,
):
super().__init__()
attention_dim = encoder_output_size
if input_layer == "embed":
self.embed = torch.nn.Sequential(
torch.nn.Embedding(vocab_size, attention_dim),
pos_enc_class(attention_dim, positional_dropout_rate),
)
elif input_layer == "linear":
self.embed = torch.nn.Sequential(
torch.nn.Linear(vocab_size, attention_dim),
torch.nn.LayerNorm(attention_dim),
torch.nn.Dropout(dropout_rate),
torch.nn.ReLU(),
pos_enc_class(attention_dim, positional_dropout_rate),
)
else:
raise ValueError(f"only 'embed' or 'linear' is supported: {input_layer}")
self.normalize_before = normalize_before
if self.normalize_before:
self.after_norm = LayerNorm(attention_dim)
if use_output_layer:
self.output_layer = torch.nn.Linear(attention_dim, vocab_size)
else:
self.output_layer = None
# Must set by the inheritance
self.decoders = None
def forward(
self,
hs_pad: torch.Tensor,
hlens: torch.Tensor,
ys_in_pad: torch.Tensor,
ys_in_lens: torch.Tensor,
) -> Tuple[torch.Tensor, torch.Tensor]:
"""Forward decoder.
Args:
hs_pad: encoded memory, float32 (batch, maxlen_in, feat)
hlens: (batch)
ys_in_pad:
input token ids, int64 (batch, maxlen_out)
if input_layer == "embed"
input tensor (batch, maxlen_out, #mels) in the other cases
ys_in_lens: (batch)
Returns:
(tuple): tuple containing:
x: decoded token score before softmax (batch, maxlen_out, token)
if use_output_layer is True,
olens: (batch, )
"""
tgt = ys_in_pad
# tgt_mask: (B, 1, L)
tgt_mask = (~make_pad_mask(ys_in_lens)[:, None, :]).to(tgt.device)
# m: (1, L, L)
m = subsequent_mask(tgt_mask.size(-1), device=tgt_mask.device).unsqueeze(0)
# tgt_mask: (B, L, L)
tgt_mask = tgt_mask & m
memory = hs_pad
memory_mask = (~make_pad_mask(hlens, maxlen=memory.size(1)))[:, None, :].to(
memory.device
)
# Padding for Longformer
if memory_mask.shape[-1] != memory.shape[1]:
padlen = memory.shape[1] - memory_mask.shape[-1]
memory_mask = torch.nn.functional.pad(
memory_mask, (0, padlen), "constant", False
)
x = self.embed(tgt)
x, tgt_mask, memory, memory_mask = self.decoders(
x, tgt_mask, memory, memory_mask
)
if self.normalize_before:
x = self.after_norm(x)
if self.output_layer is not None:
x = self.output_layer(x)
olens = tgt_mask.sum(1)
return x, olens
def forward_one_step(
self,
tgt: torch.Tensor,
tgt_mask: torch.Tensor,
memory: torch.Tensor,
cache: List[torch.Tensor] = None,
) -> Tuple[torch.Tensor, List[torch.Tensor]]:
"""Forward one step.
Args:
tgt: input token ids, int64 (batch, maxlen_out)
tgt_mask: input token mask, (batch, maxlen_out)
dtype=torch.uint8 in PyTorch 1.2-
dtype=torch.bool in PyTorch 1.2+ (include 1.2)
memory: encoded memory, float32 (batch, maxlen_in, feat)
cache: cached output list of (batch, max_time_out-1, size)
Returns:
y, cache: NN output value and cache per `self.decoders`.
y.shape` is (batch, maxlen_out, token)
"""
x = self.embed(tgt)
if cache is None:
cache = [None] * len(self.decoders)
new_cache = []
for c, decoder in zip(cache, self.decoders):
x, tgt_mask, memory, memory_mask = decoder(
x, tgt_mask, memory, None, cache=c
)
new_cache.append(x)
if self.normalize_before:
y = self.after_norm(x[:, -1])
else:
y = x[:, -1]
if self.output_layer is not None:
y = torch.log_softmax(self.output_layer(y), dim=-1)
return y, new_cache
def score(self, ys, state, x):
"""Score."""
ys_mask = subsequent_mask(len(ys), device=x.device).unsqueeze(0)
logp, state = self.forward_one_step(
ys.unsqueeze(0), ys_mask, x.unsqueeze(0), cache=state
)
return logp.squeeze(0), state
def batch_score(
self, ys: torch.Tensor, states: List[Any], xs: torch.Tensor
) -> Tuple[torch.Tensor, List[Any]]:
"""Score new token batch.
Args:
ys (torch.Tensor): torch.int64 prefix tokens (n_batch, ylen).
states (List[Any]): Scorer states for prefix tokens.
xs (torch.Tensor):
The encoder feature that generates ys (n_batch, xlen, n_feat).
Returns:
tuple[torch.Tensor, List[Any]]: Tuple of
batchfied scores for next token with shape of `(n_batch, n_vocab)`
and next state list for ys.
"""
# merge states
n_batch = len(ys)
n_layers = len(self.decoders)
if states[0] is None:
batch_state = None
else:
# transpose state of [batch, layer] into [layer, batch]
batch_state = [
torch.stack([states[b][i] for b in range(n_batch)])
for i in range(n_layers)
]
# batch decoding
ys_mask = subsequent_mask(ys.size(-1), device=xs.device).unsqueeze(0)
logp, states = self.forward_one_step(ys, ys_mask, xs, cache=batch_state)
# transpose state of [layer, batch] into [batch, layer]
state_list = [[states[i][b] for i in range(n_layers)] for b in range(n_batch)]
return logp, state_list
@tables.register("decoder_classes", "TransformerDecoder")
class TransformerDecoder(BaseTransformerDecoder):
def __init__(
self,
vocab_size: int,
encoder_output_size: int,
attention_heads: int = 4,
linear_units: int = 2048,
num_blocks: int = 6,
dropout_rate: float = 0.1,
positional_dropout_rate: float = 0.1,
self_attention_dropout_rate: float = 0.0,
src_attention_dropout_rate: float = 0.0,
input_layer: str = "embed",
use_output_layer: bool = True,
pos_enc_class=PositionalEncoding,
normalize_before: bool = True,
concat_after: bool = False,
):
super().__init__(
vocab_size=vocab_size,
encoder_output_size=encoder_output_size,
dropout_rate=dropout_rate,
positional_dropout_rate=positional_dropout_rate,
input_layer=input_layer,
use_output_layer=use_output_layer,
pos_enc_class=pos_enc_class,
normalize_before=normalize_before,
)
attention_dim = encoder_output_size
self.decoders = repeat(
num_blocks,
lambda lnum: DecoderLayer(
attention_dim,
MultiHeadedAttention(
attention_heads, attention_dim, self_attention_dropout_rate
),
MultiHeadedAttention(
attention_heads, attention_dim, src_attention_dropout_rate
),
PositionwiseFeedForward(attention_dim, linear_units, dropout_rate),
dropout_rate,
normalize_before,
concat_after,
),
)
@tables.register("decoder_classes", "LightweightConvolutionTransformerDecoder")
class LightweightConvolutionTransformerDecoder(BaseTransformerDecoder):
def __init__(
self,
vocab_size: int,
encoder_output_size: int,
attention_heads: int = 4,
linear_units: int = 2048,
num_blocks: int = 6,
dropout_rate: float = 0.1,
positional_dropout_rate: float = 0.1,
self_attention_dropout_rate: float = 0.0,
src_attention_dropout_rate: float = 0.0,
input_layer: str = "embed",
use_output_layer: bool = True,
pos_enc_class=PositionalEncoding,
normalize_before: bool = True,
concat_after: bool = False,
conv_wshare: int = 4,
conv_kernel_length: Sequence[int] = (11, 11, 11, 11, 11, 11),
conv_usebias: int = False,
):
if len(conv_kernel_length) != num_blocks:
raise ValueError(
"conv_kernel_length must have equal number of values to num_blocks: "
f"{len(conv_kernel_length)} != {num_blocks}"
)
super().__init__(
vocab_size=vocab_size,
encoder_output_size=encoder_output_size,
dropout_rate=dropout_rate,
positional_dropout_rate=positional_dropout_rate,
input_layer=input_layer,
use_output_layer=use_output_layer,
pos_enc_class=pos_enc_class,
normalize_before=normalize_before,
)
attention_dim = encoder_output_size
self.decoders = repeat(
num_blocks,
lambda lnum: DecoderLayer(
attention_dim,
LightweightConvolution(
wshare=conv_wshare,
n_feat=attention_dim,
dropout_rate=self_attention_dropout_rate,
kernel_size=conv_kernel_length[lnum],
use_kernel_mask=True,
use_bias=conv_usebias,
),
MultiHeadedAttention(
attention_heads, attention_dim, src_attention_dropout_rate
),
PositionwiseFeedForward(attention_dim, linear_units, dropout_rate),
dropout_rate,
normalize_before,
concat_after,
),
)
@tables.register("decoder_classes", "LightweightConvolution2DTransformerDecoder")
class LightweightConvolution2DTransformerDecoder(BaseTransformerDecoder):
def __init__(
self,
vocab_size: int,
encoder_output_size: int,
attention_heads: int = 4,
linear_units: int = 2048,
num_blocks: int = 6,
dropout_rate: float = 0.1,
positional_dropout_rate: float = 0.1,
self_attention_dropout_rate: float = 0.0,
src_attention_dropout_rate: float = 0.0,
input_layer: str = "embed",
use_output_layer: bool = True,
pos_enc_class=PositionalEncoding,
normalize_before: bool = True,
concat_after: bool = False,
conv_wshare: int = 4,
conv_kernel_length: Sequence[int] = (11, 11, 11, 11, 11, 11),
conv_usebias: int = False,
):
if len(conv_kernel_length) != num_blocks:
raise ValueError(
"conv_kernel_length must have equal number of values to num_blocks: "
f"{len(conv_kernel_length)} != {num_blocks}"
)
super().__init__(
vocab_size=vocab_size,
encoder_output_size=encoder_output_size,
dropout_rate=dropout_rate,
positional_dropout_rate=positional_dropout_rate,
input_layer=input_layer,
use_output_layer=use_output_layer,
pos_enc_class=pos_enc_class,
normalize_before=normalize_before,
)
attention_dim = encoder_output_size
self.decoders = repeat(
num_blocks,
lambda lnum: DecoderLayer(
attention_dim,
LightweightConvolution2D(
wshare=conv_wshare,
n_feat=attention_dim,
dropout_rate=self_attention_dropout_rate,
kernel_size=conv_kernel_length[lnum],
use_kernel_mask=True,
use_bias=conv_usebias,
),
MultiHeadedAttention(
attention_heads, attention_dim, src_attention_dropout_rate
),
PositionwiseFeedForward(attention_dim, linear_units, dropout_rate),
dropout_rate,
normalize_before,
concat_after,
),
)
@tables.register("decoder_classes", "DynamicConvolutionTransformerDecoder")
class DynamicConvolutionTransformerDecoder(BaseTransformerDecoder):
def __init__(
self,
vocab_size: int,
encoder_output_size: int,
attention_heads: int = 4,
linear_units: int = 2048,
num_blocks: int = 6,
dropout_rate: float = 0.1,
positional_dropout_rate: float = 0.1,
self_attention_dropout_rate: float = 0.0,
src_attention_dropout_rate: float = 0.0,
input_layer: str = "embed",
use_output_layer: bool = True,
pos_enc_class=PositionalEncoding,
normalize_before: bool = True,
concat_after: bool = False,
conv_wshare: int = 4,
conv_kernel_length: Sequence[int] = (11, 11, 11, 11, 11, 11),
conv_usebias: int = False,
):
if len(conv_kernel_length) != num_blocks:
raise ValueError(
"conv_kernel_length must have equal number of values to num_blocks: "
f"{len(conv_kernel_length)} != {num_blocks}"
)
super().__init__(
vocab_size=vocab_size,
encoder_output_size=encoder_output_size,
dropout_rate=dropout_rate,
positional_dropout_rate=positional_dropout_rate,
input_layer=input_layer,
use_output_layer=use_output_layer,
pos_enc_class=pos_enc_class,
normalize_before=normalize_before,
)
attention_dim = encoder_output_size
self.decoders = repeat(
num_blocks,
lambda lnum: DecoderLayer(
attention_dim,
DynamicConvolution(
wshare=conv_wshare,
n_feat=attention_dim,
dropout_rate=self_attention_dropout_rate,
kernel_size=conv_kernel_length[lnum],
use_kernel_mask=True,
use_bias=conv_usebias,
),
MultiHeadedAttention(
attention_heads, attention_dim, src_attention_dropout_rate
),
PositionwiseFeedForward(attention_dim, linear_units, dropout_rate),
dropout_rate,
normalize_before,
concat_after,
),
)
@tables.register("decoder_classes", "DynamicConvolution2DTransformerDecoder")
class DynamicConvolution2DTransformerDecoder(BaseTransformerDecoder):
def __init__(
self,
vocab_size: int,
encoder_output_size: int,
attention_heads: int = 4,
linear_units: int = 2048,
num_blocks: int = 6,
dropout_rate: float = 0.1,
positional_dropout_rate: float = 0.1,
self_attention_dropout_rate: float = 0.0,
src_attention_dropout_rate: float = 0.0,
input_layer: str = "embed",
use_output_layer: bool = True,
pos_enc_class=PositionalEncoding,
normalize_before: bool = True,
concat_after: bool = False,
conv_wshare: int = 4,
conv_kernel_length: Sequence[int] = (11, 11, 11, 11, 11, 11),
conv_usebias: int = False,
):
if len(conv_kernel_length) != num_blocks:
raise ValueError(
"conv_kernel_length must have equal number of values to num_blocks: "
f"{len(conv_kernel_length)} != {num_blocks}"
)
super().__init__(
vocab_size=vocab_size,
encoder_output_size=encoder_output_size,
dropout_rate=dropout_rate,
positional_dropout_rate=positional_dropout_rate,
input_layer=input_layer,
use_output_layer=use_output_layer,
pos_enc_class=pos_enc_class,
normalize_before=normalize_before,
)
attention_dim = encoder_output_size
self.decoders = repeat(
num_blocks,
lambda lnum: DecoderLayer(
attention_dim,
DynamicConvolution2D(
wshare=conv_wshare,
n_feat=attention_dim,
dropout_rate=self_attention_dropout_rate,
kernel_size=conv_kernel_length[lnum],
use_kernel_mask=True,
use_bias=conv_usebias,
),
MultiHeadedAttention(
attention_heads, attention_dim, src_attention_dropout_rate
),
PositionwiseFeedForward(attention_dim, linear_units, dropout_rate),
dropout_rate,
normalize_before,
concat_after,
),
)
|