File size: 13,106 Bytes
67c46fd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
# Copyright 2019 Shigeki Karita
#  Apache 2.0  (http://www.apache.org/licenses/LICENSE-2.0)

"""Transformer encoder definition."""

from typing import List
from typing import Optional
from typing import Tuple

import torch
from torch import nn
import logging

from funasr_detach.models.transformer.attention import MultiHeadedAttention
from funasr_detach.models.transformer.embedding import PositionalEncoding
from funasr_detach.models.transformer.layer_norm import LayerNorm
from funasr_detach.models.transformer.utils.multi_layer_conv import Conv1dLinear
from funasr_detach.models.transformer.utils.multi_layer_conv import MultiLayeredConv1d
from funasr_detach.models.transformer.utils.nets_utils import make_pad_mask
from funasr_detach.models.transformer.positionwise_feed_forward import (
    PositionwiseFeedForward,
)
from funasr_detach.models.transformer.utils.repeat import repeat
from funasr_detach.models.ctc.ctc import CTC

from funasr_detach.models.transformer.utils.subsampling import Conv2dSubsampling
from funasr_detach.models.transformer.utils.subsampling import Conv2dSubsampling2
from funasr_detach.models.transformer.utils.subsampling import Conv2dSubsampling6
from funasr_detach.models.transformer.utils.subsampling import Conv2dSubsampling8
from funasr_detach.models.transformer.utils.subsampling import TooShortUttError
from funasr_detach.models.transformer.utils.subsampling import check_short_utt

from funasr_detach.register import tables


class EncoderLayer(nn.Module):
    """Encoder layer module.

    Args:
        size (int): Input dimension.
        self_attn (torch.nn.Module): Self-attention module instance.
            `MultiHeadedAttention` or `RelPositionMultiHeadedAttention` instance
            can be used as the argument.
        feed_forward (torch.nn.Module): Feed-forward module instance.
            `PositionwiseFeedForward`, `MultiLayeredConv1d`, or `Conv1dLinear` instance
            can be used as the argument.
        dropout_rate (float): Dropout rate.
        normalize_before (bool): Whether to use layer_norm before the first block.
        concat_after (bool): Whether to concat attention layer's input and output.
            if True, additional linear will be applied.
            i.e. x -> x + linear(concat(x, att(x)))
            if False, no additional linear will be applied. i.e. x -> x + att(x)
        stochastic_depth_rate (float): Proability to skip this layer.
            During training, the layer may skip residual computation and return input
            as-is with given probability.
    """

    def __init__(
        self,
        size,
        self_attn,
        feed_forward,
        dropout_rate,
        normalize_before=True,
        concat_after=False,
        stochastic_depth_rate=0.0,
    ):
        """Construct an EncoderLayer object."""
        super(EncoderLayer, self).__init__()
        self.self_attn = self_attn
        self.feed_forward = feed_forward
        self.norm1 = LayerNorm(size)
        self.norm2 = LayerNorm(size)
        self.dropout = nn.Dropout(dropout_rate)
        self.size = size
        self.normalize_before = normalize_before
        self.concat_after = concat_after
        if self.concat_after:
            self.concat_linear = nn.Linear(size + size, size)
        self.stochastic_depth_rate = stochastic_depth_rate

    def forward(self, x, mask, cache=None):
        """Compute encoded features.

        Args:
            x_input (torch.Tensor): Input tensor (#batch, time, size).
            mask (torch.Tensor): Mask tensor for the input (#batch, time).
            cache (torch.Tensor): Cache tensor of the input (#batch, time - 1, size).

        Returns:
            torch.Tensor: Output tensor (#batch, time, size).
            torch.Tensor: Mask tensor (#batch, time).

        """
        skip_layer = False
        # with stochastic depth, residual connection `x + f(x)` becomes
        # `x <- x + 1 / (1 - p) * f(x)` at training time.
        stoch_layer_coeff = 1.0
        if self.training and self.stochastic_depth_rate > 0:
            skip_layer = torch.rand(1).item() < self.stochastic_depth_rate
            stoch_layer_coeff = 1.0 / (1 - self.stochastic_depth_rate)

        if skip_layer:
            if cache is not None:
                x = torch.cat([cache, x], dim=1)
            return x, mask

        residual = x
        if self.normalize_before:
            x = self.norm1(x)

        if cache is None:
            x_q = x
        else:
            assert cache.shape == (x.shape[0], x.shape[1] - 1, self.size)
            x_q = x[:, -1:, :]
            residual = residual[:, -1:, :]
            mask = None if mask is None else mask[:, -1:, :]

        if self.concat_after:
            x_concat = torch.cat((x, self.self_attn(x_q, x, x, mask)), dim=-1)
            x = residual + stoch_layer_coeff * self.concat_linear(x_concat)
        else:
            x = residual + stoch_layer_coeff * self.dropout(
                self.self_attn(x_q, x, x, mask)
            )
        if not self.normalize_before:
            x = self.norm1(x)

        residual = x
        if self.normalize_before:
            x = self.norm2(x)
        x = residual + stoch_layer_coeff * self.dropout(self.feed_forward(x))
        if not self.normalize_before:
            x = self.norm2(x)

        if cache is not None:
            x = torch.cat([cache, x], dim=1)

        return x, mask


@tables.register("encoder_classes", "TransformerEncoder")
class TransformerEncoder(nn.Module):
    """Transformer encoder module.

    Args:
        input_size: input dim
        output_size: dimension of attention
        attention_heads: the number of heads of multi head attention
        linear_units: the number of units of position-wise feed forward
        num_blocks: the number of decoder blocks
        dropout_rate: dropout rate
        attention_dropout_rate: dropout rate in attention
        positional_dropout_rate: dropout rate after adding positional encoding
        input_layer: input layer type
        pos_enc_class: PositionalEncoding or ScaledPositionalEncoding
        normalize_before: whether to use layer_norm before the first block
        concat_after: whether to concat attention layer's input and output
            if True, additional linear will be applied.
            i.e. x -> x + linear(concat(x, att(x)))
            if False, no additional linear will be applied.
            i.e. x -> x + att(x)
        positionwise_layer_type: linear of conv1d
        positionwise_conv_kernel_size: kernel size of positionwise conv1d layer
        padding_idx: padding_idx for input_layer=embed
    """

    def __init__(
        self,
        input_size: int,
        output_size: int = 256,
        attention_heads: int = 4,
        linear_units: int = 2048,
        num_blocks: int = 6,
        dropout_rate: float = 0.1,
        positional_dropout_rate: float = 0.1,
        attention_dropout_rate: float = 0.0,
        input_layer: Optional[str] = "conv2d",
        pos_enc_class=PositionalEncoding,
        normalize_before: bool = True,
        concat_after: bool = False,
        positionwise_layer_type: str = "linear",
        positionwise_conv_kernel_size: int = 1,
        padding_idx: int = -1,
        interctc_layer_idx: List[int] = [],
        interctc_use_conditioning: bool = False,
    ):
        super().__init__()
        self._output_size = output_size

        if input_layer == "linear":
            self.embed = torch.nn.Sequential(
                torch.nn.Linear(input_size, output_size),
                torch.nn.LayerNorm(output_size),
                torch.nn.Dropout(dropout_rate),
                torch.nn.ReLU(),
                pos_enc_class(output_size, positional_dropout_rate),
            )
        elif input_layer == "conv2d":
            self.embed = Conv2dSubsampling(input_size, output_size, dropout_rate)
        elif input_layer == "conv2d2":
            self.embed = Conv2dSubsampling2(input_size, output_size, dropout_rate)
        elif input_layer == "conv2d6":
            self.embed = Conv2dSubsampling6(input_size, output_size, dropout_rate)
        elif input_layer == "conv2d8":
            self.embed = Conv2dSubsampling8(input_size, output_size, dropout_rate)
        elif input_layer == "embed":
            self.embed = torch.nn.Sequential(
                torch.nn.Embedding(input_size, output_size, padding_idx=padding_idx),
                pos_enc_class(output_size, positional_dropout_rate),
            )
        elif input_layer is None:
            if input_size == output_size:
                self.embed = None
            else:
                self.embed = torch.nn.Linear(input_size, output_size)
        else:
            raise ValueError("unknown input_layer: " + input_layer)
        self.normalize_before = normalize_before
        if positionwise_layer_type == "linear":
            positionwise_layer = PositionwiseFeedForward
            positionwise_layer_args = (
                output_size,
                linear_units,
                dropout_rate,
            )
        elif positionwise_layer_type == "conv1d":
            positionwise_layer = MultiLayeredConv1d
            positionwise_layer_args = (
                output_size,
                linear_units,
                positionwise_conv_kernel_size,
                dropout_rate,
            )
        elif positionwise_layer_type == "conv1d-linear":
            positionwise_layer = Conv1dLinear
            positionwise_layer_args = (
                output_size,
                linear_units,
                positionwise_conv_kernel_size,
                dropout_rate,
            )
        else:
            raise NotImplementedError("Support only linear or conv1d.")
        self.encoders = repeat(
            num_blocks,
            lambda lnum: EncoderLayer(
                output_size,
                MultiHeadedAttention(
                    attention_heads, output_size, attention_dropout_rate
                ),
                positionwise_layer(*positionwise_layer_args),
                dropout_rate,
                normalize_before,
                concat_after,
            ),
        )
        if self.normalize_before:
            self.after_norm = LayerNorm(output_size)

        self.interctc_layer_idx = interctc_layer_idx
        if len(interctc_layer_idx) > 0:
            assert 0 < min(interctc_layer_idx) and max(interctc_layer_idx) < num_blocks
        self.interctc_use_conditioning = interctc_use_conditioning
        self.conditioning_layer = None

    def output_size(self) -> int:
        return self._output_size

    def forward(
        self,
        xs_pad: torch.Tensor,
        ilens: torch.Tensor,
        prev_states: torch.Tensor = None,
        ctc: CTC = None,
    ) -> Tuple[torch.Tensor, torch.Tensor, Optional[torch.Tensor]]:
        """Embed positions in tensor.

        Args:
            xs_pad: input tensor (B, L, D)
            ilens: input length (B)
            prev_states: Not to be used now.
        Returns:
            position embedded tensor and mask
        """
        masks = (~make_pad_mask(ilens)[:, None, :]).to(xs_pad.device)

        if self.embed is None:
            xs_pad = xs_pad
        elif (
            isinstance(self.embed, Conv2dSubsampling)
            or isinstance(self.embed, Conv2dSubsampling2)
            or isinstance(self.embed, Conv2dSubsampling6)
            or isinstance(self.embed, Conv2dSubsampling8)
        ):
            short_status, limit_size = check_short_utt(self.embed, xs_pad.size(1))
            if short_status:
                raise TooShortUttError(
                    f"has {xs_pad.size(1)} frames and is too short for subsampling "
                    + f"(it needs more than {limit_size} frames), return empty results",
                    xs_pad.size(1),
                    limit_size,
                )
            xs_pad, masks = self.embed(xs_pad, masks)
        else:
            xs_pad = self.embed(xs_pad)

        intermediate_outs = []
        if len(self.interctc_layer_idx) == 0:
            xs_pad, masks = self.encoders(xs_pad, masks)
        else:
            for layer_idx, encoder_layer in enumerate(self.encoders):
                xs_pad, masks = encoder_layer(xs_pad, masks)

                if layer_idx + 1 in self.interctc_layer_idx:
                    encoder_out = xs_pad

                    # intermediate outputs are also normalized
                    if self.normalize_before:
                        encoder_out = self.after_norm(encoder_out)

                    intermediate_outs.append((layer_idx + 1, encoder_out))

                    if self.interctc_use_conditioning:
                        ctc_out = ctc.softmax(encoder_out)
                        xs_pad = xs_pad + self.conditioning_layer(ctc_out)

        if self.normalize_before:
            xs_pad = self.after_norm(xs_pad)

        olens = masks.squeeze(1).sum(1)
        if len(intermediate_outs) > 0:
            return (xs_pad, intermediate_outs), olens, None
        return xs_pad, olens, None