File size: 5,025 Bytes
67c46fd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
#!/usr/bin/env python3
# -*- coding: utf-8 -*-

# Copyright 2019 Shigeki Karita
#  Apache 2.0  (http://www.apache.org/licenses/LICENSE-2.0)

"""Layer normalization module."""

import torch
import torch.nn as nn


class LayerNorm(torch.nn.LayerNorm):
    """Layer normalization module.

    Args:
        nout (int): Output dim size.
        dim (int): Dimension to be normalized.

    """

    def __init__(self, nout, dim=-1):
        """Construct an LayerNorm object."""
        super(LayerNorm, self).__init__(nout, eps=1e-12)
        self.dim = dim

    def forward(self, x):
        """Apply layer normalization.

        Args:
            x (torch.Tensor): Input tensor.

        Returns:
            torch.Tensor: Normalized tensor.

        """
        if self.dim == -1:
            return super(LayerNorm, self).forward(x)
        return (
            super(LayerNorm, self)
            .forward(x.transpose(self.dim, -1))
            .transpose(self.dim, -1)
        )


class GlobalLayerNorm(nn.Module):
    """Calculate Global Layer Normalization.

    Arguments
    ---------
       dim : (int or list or torch.Size)
           Input shape from an expected input of size.
       eps : float
           A value added to the denominator for numerical stability.
       elementwise_affine : bool
          A boolean value that when set to True,
          this module has learnable per-element affine parameters
          initialized to ones (for weights) and zeros (for biases).

    Example
    -------
    >>> x = torch.randn(5, 10, 20)
    >>> GLN = GlobalLayerNorm(10, 3)
    >>> x_norm = GLN(x)
    """

    def __init__(self, dim, shape, eps=1e-8, elementwise_affine=True):
        super(GlobalLayerNorm, self).__init__()
        self.dim = dim
        self.eps = eps
        self.elementwise_affine = elementwise_affine

        if self.elementwise_affine:
            if shape == 3:
                self.weight = nn.Parameter(torch.ones(self.dim, 1))
                self.bias = nn.Parameter(torch.zeros(self.dim, 1))
            if shape == 4:
                self.weight = nn.Parameter(torch.ones(self.dim, 1, 1))
                self.bias = nn.Parameter(torch.zeros(self.dim, 1, 1))
        else:
            self.register_parameter("weight", None)
            self.register_parameter("bias", None)

    def forward(self, x):
        """Returns the normalized tensor.

        Arguments
        ---------
        x : torch.Tensor
            Tensor of size [N, C, K, S] or [N, C, L].
        """
        # x = N x C x K x S or N x C x L
        # N x 1 x 1
        # cln: mean,var N x 1 x K x S
        # gln: mean,var N x 1 x 1
        if x.dim() == 3:
            mean = torch.mean(x, (1, 2), keepdim=True)
            var = torch.mean((x - mean) ** 2, (1, 2), keepdim=True)
            if self.elementwise_affine:
                x = self.weight * (x - mean) / torch.sqrt(var + self.eps) + self.bias
            else:
                x = (x - mean) / torch.sqrt(var + self.eps)

        if x.dim() == 4:
            mean = torch.mean(x, (1, 2, 3), keepdim=True)
            var = torch.mean((x - mean) ** 2, (1, 2, 3), keepdim=True)
            if self.elementwise_affine:
                x = self.weight * (x - mean) / torch.sqrt(var + self.eps) + self.bias
            else:
                x = (x - mean) / torch.sqrt(var + self.eps)
        return x


class CumulativeLayerNorm(nn.LayerNorm):
    """Calculate Cumulative Layer Normalization.

       Arguments
       ---------
       dim : int
        Dimension that you want to normalize.
       elementwise_affine : True
        Learnable per-element affine parameters.

    Example
    -------
    >>> x = torch.randn(5, 10, 20)
    >>> CLN = CumulativeLayerNorm(10)
    >>> x_norm = CLN(x)
    """

    def __init__(self, dim, elementwise_affine=True):
        super(CumulativeLayerNorm, self).__init__(
            dim, elementwise_affine=elementwise_affine, eps=1e-8
        )

    def forward(self, x):
        """Returns the normalized tensor.

        Arguments
        ---------
        x : torch.Tensor
            Tensor size [N, C, K, S] or [N, C, L]
        """
        # x: N x C x K x S or N x C x L
        # N x K x S x C
        if x.dim() == 4:
            x = x.permute(0, 2, 3, 1).contiguous()
            # N x K x S x C == only channel norm
            x = super().forward(x)
            # N x C x K x S
            x = x.permute(0, 3, 1, 2).contiguous()
        if x.dim() == 3:
            x = torch.transpose(x, 1, 2)
            # N x L x C == only channel norm
            x = super().forward(x)
            # N x C x L
            x = torch.transpose(x, 1, 2)
        return x


class ScaleNorm(nn.Module):
    def __init__(self, dim, eps=1e-5):
        super().__init__()
        self.scale = dim**-0.5
        self.eps = eps
        self.g = nn.Parameter(torch.ones(1))

    def forward(self, x):
        norm = torch.norm(x, dim=-1, keepdim=True) * self.scale
        return x / norm.clamp(min=self.eps) * self.g