File size: 16,888 Bytes
67c46fd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
import logging
from typing import Union, Dict, List, Tuple, Optional

import time
import torch
import torch.nn as nn
from torch.cuda.amp import autocast

from funasr_detach.losses.label_smoothing_loss import LabelSmoothingLoss
from funasr_detach.models.ctc.ctc import CTC
from funasr_detach.models.transformer.utils.add_sos_eos import add_sos_eos
from funasr_detach.metrics.compute_acc import th_accuracy

# from funasr_detach.models.e2e_asr_common import ErrorCalculator
from funasr_detach.train_utils.device_funcs import force_gatherable
from funasr_detach.utils.load_utils import load_audio_text_image_video, extract_fbank
from funasr_detach.utils import postprocess_utils
from funasr_detach.utils.datadir_writer import DatadirWriter
from funasr_detach.register import tables


@tables.register("model_classes", "Transformer")
class Transformer(nn.Module):
    """CTC-attention hybrid Encoder-Decoder model"""

    def __init__(
        self,
        specaug: str = None,
        specaug_conf: dict = None,
        normalize: str = None,
        normalize_conf: dict = None,
        encoder: str = None,
        encoder_conf: dict = None,
        decoder: str = None,
        decoder_conf: dict = None,
        ctc: str = None,
        ctc_conf: dict = None,
        ctc_weight: float = 0.5,
        interctc_weight: float = 0.0,
        input_size: int = 80,
        vocab_size: int = -1,
        ignore_id: int = -1,
        blank_id: int = 0,
        sos: int = 1,
        eos: int = 2,
        lsm_weight: float = 0.0,
        length_normalized_loss: bool = False,
        report_cer: bool = True,
        report_wer: bool = True,
        sym_space: str = "<space>",
        sym_blank: str = "<blank>",
        # extract_feats_in_collect_stats: bool = True,
        share_embedding: bool = False,
        # preencoder: Optional[AbsPreEncoder] = None,
        # postencoder: Optional[AbsPostEncoder] = None,
        **kwargs,
    ):

        super().__init__()

        if specaug is not None:
            specaug_class = tables.specaug_classes.get(specaug)
            specaug = specaug_class(**specaug_conf)
        if normalize is not None:
            normalize_class = tables.normalize_classes.get(normalize)
            normalize = normalize_class(**normalize_conf)
        encoder_class = tables.encoder_classes.get(encoder)
        encoder = encoder_class(input_size=input_size, **encoder_conf)
        encoder_output_size = encoder.output_size()
        if decoder is not None:
            decoder_class = tables.decoder_classes.get(decoder)
            decoder = decoder_class(
                vocab_size=vocab_size,
                encoder_output_size=encoder_output_size,
                **decoder_conf,
            )
        if ctc_weight > 0.0:

            if ctc_conf is None:
                ctc_conf = {}

            ctc = CTC(
                odim=vocab_size, encoder_output_size=encoder_output_size, **ctc_conf
            )

        self.blank_id = blank_id
        self.sos = sos if sos is not None else vocab_size - 1
        self.eos = eos if eos is not None else vocab_size - 1
        self.vocab_size = vocab_size
        self.ignore_id = ignore_id
        self.ctc_weight = ctc_weight
        self.specaug = specaug
        self.normalize = normalize
        self.encoder = encoder

        if not hasattr(self.encoder, "interctc_use_conditioning"):
            self.encoder.interctc_use_conditioning = False
        if self.encoder.interctc_use_conditioning:
            self.encoder.conditioning_layer = torch.nn.Linear(
                vocab_size, self.encoder.output_size()
            )
        self.interctc_weight = interctc_weight

        # self.error_calculator = None
        if ctc_weight == 1.0:
            self.decoder = None
        else:
            self.decoder = decoder

        self.criterion_att = LabelSmoothingLoss(
            size=vocab_size,
            padding_idx=ignore_id,
            smoothing=lsm_weight,
            normalize_length=length_normalized_loss,
        )
        #
        # if report_cer or report_wer:
        #     self.error_calculator = ErrorCalculator(
        #         token_list, sym_space, sym_blank, report_cer, report_wer
        #     )
        #
        self.error_calculator = None
        if ctc_weight == 0.0:
            self.ctc = None
        else:
            self.ctc = ctc

        self.share_embedding = share_embedding
        if self.share_embedding:
            self.decoder.embed = None

        self.length_normalized_loss = length_normalized_loss
        self.beam_search = None

    def forward(
        self,
        speech: torch.Tensor,
        speech_lengths: torch.Tensor,
        text: torch.Tensor,
        text_lengths: torch.Tensor,
        **kwargs,
    ) -> Tuple[torch.Tensor, Dict[str, torch.Tensor], torch.Tensor]:
        """Encoder + Decoder + Calc loss
        Args:
                speech: (Batch, Length, ...)
                speech_lengths: (Batch, )
                text: (Batch, Length)
                text_lengths: (Batch,)
        """
        # import pdb;
        # pdb.set_trace()
        if len(text_lengths.size()) > 1:
            text_lengths = text_lengths[:, 0]
        if len(speech_lengths.size()) > 1:
            speech_lengths = speech_lengths[:, 0]

        batch_size = speech.shape[0]

        # 1. Encoder
        encoder_out, encoder_out_lens = self.encode(speech, speech_lengths)
        intermediate_outs = None
        if isinstance(encoder_out, tuple):
            intermediate_outs = encoder_out[1]
            encoder_out = encoder_out[0]

        loss_att, acc_att, cer_att, wer_att = None, None, None, None
        loss_ctc, cer_ctc = None, None
        stats = dict()

        # decoder: CTC branch
        if self.ctc_weight != 0.0:
            loss_ctc, cer_ctc = self._calc_ctc_loss(
                encoder_out, encoder_out_lens, text, text_lengths
            )

            # Collect CTC branch stats
            stats["loss_ctc"] = loss_ctc.detach() if loss_ctc is not None else None
            stats["cer_ctc"] = cer_ctc

        # Intermediate CTC (optional)
        loss_interctc = 0.0
        if self.interctc_weight != 0.0 and intermediate_outs is not None:
            for layer_idx, intermediate_out in intermediate_outs:
                # we assume intermediate_out has the same length & padding
                # as those of encoder_out
                loss_ic, cer_ic = self._calc_ctc_loss(
                    intermediate_out, encoder_out_lens, text, text_lengths
                )
                loss_interctc = loss_interctc + loss_ic

                # Collect Intermedaite CTC stats
                stats["loss_interctc_layer{}".format(layer_idx)] = (
                    loss_ic.detach() if loss_ic is not None else None
                )
                stats["cer_interctc_layer{}".format(layer_idx)] = cer_ic

            loss_interctc = loss_interctc / len(intermediate_outs)

            # calculate whole encoder loss
            loss_ctc = (
                1 - self.interctc_weight
            ) * loss_ctc + self.interctc_weight * loss_interctc

        # decoder: Attention decoder branch
        loss_att, acc_att, cer_att, wer_att = self._calc_att_loss(
            encoder_out, encoder_out_lens, text, text_lengths
        )

        # 3. CTC-Att loss definition
        if self.ctc_weight == 0.0:
            loss = loss_att
        elif self.ctc_weight == 1.0:
            loss = loss_ctc
        else:
            loss = self.ctc_weight * loss_ctc + (1 - self.ctc_weight) * loss_att

        # Collect Attn branch stats
        stats["loss_att"] = loss_att.detach() if loss_att is not None else None
        stats["acc"] = acc_att
        stats["cer"] = cer_att
        stats["wer"] = wer_att

        # Collect total loss stats
        stats["loss"] = torch.clone(loss.detach())

        # force_gatherable: to-device and to-tensor if scalar for DataParallel
        if self.length_normalized_loss:
            batch_size = int((text_lengths + 1).sum())
        loss, stats, weight = force_gatherable((loss, stats, batch_size), loss.device)
        return loss, stats, weight

    def encode(
        self,
        speech: torch.Tensor,
        speech_lengths: torch.Tensor,
        **kwargs,
    ) -> Tuple[torch.Tensor, torch.Tensor]:
        """Frontend + Encoder. Note that this method is used by asr_inference.py
        Args:
                speech: (Batch, Length, ...)
                speech_lengths: (Batch, )
                ind: int
        """
        with autocast(False):

            # Data augmentation
            if self.specaug is not None and self.training:
                speech, speech_lengths = self.specaug(speech, speech_lengths)

            # Normalization for feature: e.g. Global-CMVN, Utterance-CMVN
            if self.normalize is not None:
                speech, speech_lengths = self.normalize(speech, speech_lengths)

        # Forward encoder
        # feats: (Batch, Length, Dim)
        # -> encoder_out: (Batch, Length2, Dim2)
        if self.encoder.interctc_use_conditioning:
            encoder_out, encoder_out_lens, _ = self.encoder(
                speech, speech_lengths, ctc=self.ctc
            )
        else:
            encoder_out, encoder_out_lens, _ = self.encoder(speech, speech_lengths)
        intermediate_outs = None
        if isinstance(encoder_out, tuple):
            intermediate_outs = encoder_out[1]
            encoder_out = encoder_out[0]

        if intermediate_outs is not None:
            return (encoder_out, intermediate_outs), encoder_out_lens

        return encoder_out, encoder_out_lens

    def _calc_att_loss(
        self,
        encoder_out: torch.Tensor,
        encoder_out_lens: torch.Tensor,
        ys_pad: torch.Tensor,
        ys_pad_lens: torch.Tensor,
    ):
        ys_in_pad, ys_out_pad = add_sos_eos(ys_pad, self.sos, self.eos, self.ignore_id)
        ys_in_lens = ys_pad_lens + 1

        # 1. Forward decoder
        decoder_out, _ = self.decoder(
            encoder_out, encoder_out_lens, ys_in_pad, ys_in_lens
        )

        # 2. Compute attention loss
        loss_att = self.criterion_att(decoder_out, ys_out_pad)
        acc_att = th_accuracy(
            decoder_out.view(-1, self.vocab_size),
            ys_out_pad,
            ignore_label=self.ignore_id,
        )

        # Compute cer/wer using attention-decoder
        if self.training or self.error_calculator is None:
            cer_att, wer_att = None, None
        else:
            ys_hat = decoder_out.argmax(dim=-1)
            cer_att, wer_att = self.error_calculator(ys_hat.cpu(), ys_pad.cpu())

        return loss_att, acc_att, cer_att, wer_att

    def _calc_ctc_loss(
        self,
        encoder_out: torch.Tensor,
        encoder_out_lens: torch.Tensor,
        ys_pad: torch.Tensor,
        ys_pad_lens: torch.Tensor,
    ):
        # Calc CTC loss
        loss_ctc = self.ctc(encoder_out, encoder_out_lens, ys_pad, ys_pad_lens)

        # Calc CER using CTC
        cer_ctc = None
        if not self.training and self.error_calculator is not None:
            ys_hat = self.ctc.argmax(encoder_out).data
            cer_ctc = self.error_calculator(ys_hat.cpu(), ys_pad.cpu(), is_ctc=True)
        return loss_ctc, cer_ctc

    def init_beam_search(
        self,
        **kwargs,
    ):
        from funasr_detach.models.transformer.search import BeamSearch
        from funasr_detach.models.transformer.scorers.ctc import CTCPrefixScorer
        from funasr_detach.models.transformer.scorers.length_bonus import LengthBonus

        # 1. Build ASR model
        scorers = {}

        if self.ctc != None:
            ctc = CTCPrefixScorer(ctc=self.ctc, eos=self.eos)
            scorers.update(ctc=ctc)
        token_list = kwargs.get("token_list")
        scorers.update(
            decoder=self.decoder,
            length_bonus=LengthBonus(len(token_list)),
        )

        # 3. Build ngram model
        # ngram is not supported now
        ngram = None
        scorers["ngram"] = ngram

        weights = dict(
            decoder=1.0 - kwargs.get("decoding_ctc_weight", 0.5),
            ctc=kwargs.get("decoding_ctc_weight", 0.5),
            lm=kwargs.get("lm_weight", 0.0),
            ngram=kwargs.get("ngram_weight", 0.0),
            length_bonus=kwargs.get("penalty", 0.0),
        )
        beam_search = BeamSearch(
            beam_size=kwargs.get("beam_size", 10),
            weights=weights,
            scorers=scorers,
            sos=self.sos,
            eos=self.eos,
            vocab_size=len(token_list),
            token_list=token_list,
            pre_beam_score_key=None if self.ctc_weight == 1.0 else "full",
        )

        self.beam_search = beam_search

    def inference(
        self,
        data_in,
        data_lengths=None,
        key: list = None,
        tokenizer=None,
        frontend=None,
        **kwargs,
    ):

        if kwargs.get("batch_size", 1) > 1:
            raise NotImplementedError("batch decoding is not implemented")

        # init beamsearch
        if self.beam_search is None:
            logging.info("enable beam_search")
            self.init_beam_search(**kwargs)
            self.nbest = kwargs.get("nbest", 1)

        meta_data = {}
        if (
            isinstance(data_in, torch.Tensor)
            and kwargs.get("data_type", "sound") == "fbank"
        ):  # fbank
            speech, speech_lengths = data_in, data_lengths
            if len(speech.shape) < 3:
                speech = speech[None, :, :]
            if speech_lengths is None:
                speech_lengths = speech.shape[1]
        else:
            # extract fbank feats
            time1 = time.perf_counter()
            audio_sample_list = load_audio_text_image_video(
                data_in,
                fs=frontend.fs,
                audio_fs=kwargs.get("fs", 16000),
                data_type=kwargs.get("data_type", "sound"),
                tokenizer=tokenizer,
            )
            time2 = time.perf_counter()
            meta_data["load_data"] = f"{time2 - time1:0.3f}"
            speech, speech_lengths = extract_fbank(
                audio_sample_list,
                data_type=kwargs.get("data_type", "sound"),
                frontend=frontend,
            )
            time3 = time.perf_counter()
            meta_data["extract_feat"] = f"{time3 - time2:0.3f}"
            meta_data["batch_data_time"] = (
                speech_lengths.sum().item()
                * frontend.frame_shift
                * frontend.lfr_n
                / 1000
            )

        speech = speech.to(device=kwargs["device"])
        speech_lengths = speech_lengths.to(device=kwargs["device"])
        # Encoder
        encoder_out, encoder_out_lens = self.encode(speech, speech_lengths)
        if isinstance(encoder_out, tuple):
            encoder_out = encoder_out[0]

        # c. Passed the encoder result and the beam search
        nbest_hyps = self.beam_search(
            x=encoder_out[0],
            maxlenratio=kwargs.get("maxlenratio", 0.0),
            minlenratio=kwargs.get("minlenratio", 0.0),
        )

        nbest_hyps = nbest_hyps[: self.nbest]

        results = []
        b, n, d = encoder_out.size()
        for i in range(b):

            for nbest_idx, hyp in enumerate(nbest_hyps):
                ibest_writer = None
                if kwargs.get("output_dir") is not None:
                    if not hasattr(self, "writer"):
                        self.writer = DatadirWriter(kwargs.get("output_dir"))
                    ibest_writer = self.writer[f"{nbest_idx + 1}best_recog"]

                # remove sos/eos and get results
                last_pos = -1
                if isinstance(hyp.yseq, list):
                    token_int = hyp.yseq[1:last_pos]
                else:
                    token_int = hyp.yseq[1:last_pos].tolist()

                # remove blank symbol id, which is assumed to be 0
                token_int = list(
                    filter(
                        lambda x: x != self.eos
                        and x != self.sos
                        and x != self.blank_id,
                        token_int,
                    )
                )

                # Change integer-ids to tokens
                token = tokenizer.ids2tokens(token_int)
                text = tokenizer.tokens2text(token)

                text_postprocessed, _ = postprocess_utils.sentence_postprocess(token)
                result_i = {"key": key[i], "token": token, "text": text_postprocessed}
                results.append(result_i)

                if ibest_writer is not None:
                    ibest_writer["token"][key[i]] = " ".join(token)
                    ibest_writer["text"][key[i]] = text_postprocessed

        return results, meta_data