Spaces:
Running
Running
File size: 17,630 Bytes
67c46fd |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 |
import os
import time
import torch
import logging
from tqdm import tqdm
from datetime import datetime
import torch.distributed as dist
from contextlib import nullcontext
# from torch.utils.tensorboard import SummaryWriter
from tensorboardX import SummaryWriter
from pathlib import Path
from funasr_detach.train_utils.device_funcs import to_device
from funasr_detach.train_utils.recursive_op import recursive_average
from funasr_detach.train_utils.average_nbest_models import average_checkpoints
class Trainer:
"""
A simple trainer class for training a PyTorch model, saving checkpoints at the end of each epoch,
and optionally resuming from a saved checkpoint.
Attributes:
max_epoch (int): Maximum number of epochs for training.
model (torch.nn.Module): The model to be trained.
optim (torch.optim.Optimizer): The optimizer to use for training.
scheduler (torch.optim.lr_scheduler._LRScheduler): The learning rate scheduler.
dataloader_train (torch.utils.data.DataLoader): DataLoader for the training dataset.
dataloader_val (torch.utils.data.DataLoader): DataLoader for the validation dataset.
output_dir (str): Directory where model checkpoints will be saved.
resume (str, optional): Path to a checkpoint to resume training from.
"""
def __init__(
self,
model,
optim,
scheduler,
dataloader_train,
dataloader_val,
local_rank,
use_ddp=False,
use_fsdp=False,
output_dir: str = "./",
**kwargs,
):
"""
Initializes the Trainer class with the model, optimizer, scheduler, dataloaders, and other settings.
Args:
model (torch.nn.Module): The model to be trained.
optim (torch.optim.Optimizer): The optimizer to use for training.
scheduler (torch.optim.lr_scheduler._LRScheduler): The learning rate scheduler.
dataloader_train (torch.utils.data.DataLoader): The DataLoader for the training dataset.
dataloader_val (torch.utils.data.DataLoader): The DataLoader for the validation dataset.
**kwargs: Additional keyword arguments:
max_epoch (int): The maximum number of epochs for training.
output_dir (str): The directory where model checkpoints will be saved. Default is './'.
resume (str, optional): The file path to a checkpoint to resume training from.
"""
self.model = model
self.optim = optim
self.scheduler = scheduler
self.dataloader_train = dataloader_train
self.dataloader_val = dataloader_val
self.output_dir = output_dir
self.resume = kwargs.get("resume", True)
self.start_epoch = 0
self.max_epoch = kwargs.get("max_epoch", 100)
self.local_rank = local_rank
self.use_ddp = use_ddp
self.use_fsdp = use_fsdp
self.device = next(model.parameters()).device
self.avg_nbest_model = kwargs.get("avg_nbest_model", 5)
self.kwargs = kwargs
self.log_interval = kwargs.get("log_interval", 50)
self.batch_total = 0
try:
rank = dist.get_rank()
world_size = dist.get_world_size()
except:
rank = 0
world_size = 1
logging.warning("distributed is not initialized, only single shard")
self.rank = rank
self.world_size = world_size
os.makedirs(os.path.join(self.output_dir, "tensorboard"), exist_ok=True)
self.writer = (
SummaryWriter(os.path.join(self.output_dir, "tensorboard"))
if rank == 0
else None
)
def _save_checkpoint(self, epoch):
"""
Saves a checkpoint containing the model's state, the optimizer's state,
and the scheduler's state at the end of the given epoch. This method is
intended to be called at the end of each epoch to save the training progress.
Args:
epoch (int): The epoch number at which the checkpoint is being saved.
"""
state = {
"epoch": epoch,
"state_dict": self.model.state_dict(),
"optimizer": self.optim.state_dict(),
"scheduler": self.scheduler.state_dict(),
}
# Create output directory if it does not exist
os.makedirs(self.output_dir, exist_ok=True)
filename = os.path.join(self.output_dir, f"model.pt.ep{epoch}")
torch.save(state, filename)
print(f"\nCheckpoint saved to {filename}\n")
latest = Path(os.path.join(self.output_dir, f"model.pt"))
torch.save(state, latest)
def _resume_checkpoint(self, resume_path):
"""
Resumes training from a checkpoint at the given file path.
Loads the model's state, the optimizer's state, and the scheduler's state.
Args:
resume_path (str): The file path to the checkpoint to resume from.
"""
ckpt = os.path.join(resume_path, "model.pt")
if os.path.isfile(ckpt):
checkpoint = torch.load(ckpt)
self.start_epoch = checkpoint["epoch"] + 1
# self.model.load_state_dict(checkpoint['state_dict'])
src_state = checkpoint["state_dict"]
dst_state = self.model.state_dict()
for k in dst_state.keys():
if not k.startswith("module.") and "module." + k in src_state.keys():
k_ddp = "module." + k
else:
k_ddp = k
if k_ddp in src_state.keys():
dst_state[k] = src_state[k_ddp]
else:
print(f"Miss key in ckpt: model: {k}, ckpt: {k_ddp}")
self.model.load_state_dict(dst_state)
self.optim.load_state_dict(checkpoint["optimizer"])
self.scheduler.load_state_dict(checkpoint["scheduler"])
print(f"Checkpoint loaded successfully from '{ckpt}'")
else:
print(f"No checkpoint found at '{ckpt}', starting from scratch")
if self.use_ddp or self.use_fsdp:
dist.barrier()
def run(self):
"""
Starts the training process, iterating over epochs, training the model,
and saving checkpoints at the end of each epoch.
"""
if self.resume:
self._resume_checkpoint(self.output_dir)
for epoch in range(self.start_epoch, self.max_epoch + 1):
time1 = time.perf_counter()
self._train_epoch(epoch)
if self.use_ddp or self.use_fsdp:
dist.barrier()
self._validate_epoch(epoch)
if self.use_ddp or self.use_fsdp:
dist.barrier()
if self.rank == 0:
self._save_checkpoint(epoch)
if self.use_ddp or self.use_fsdp:
dist.barrier()
self.scheduler.step()
time2 = time.perf_counter()
time_escaped = (time2 - time1) / 3600.0
print(
f"\nrank: {self.local_rank}, time_escaped_epoch: {time_escaped:.3f} hours, estimated to finish {self.max_epoch} epoch: {(self.max_epoch-epoch)*time_escaped:.3f}\n"
)
if self.rank == 0:
average_checkpoints(self.output_dir, self.avg_nbest_model)
if self.use_ddp or self.use_fsdp:
dist.barrier()
if self.writer:
self.writer.close()
def _train_epoch(self, epoch):
"""
Defines the training process for a single epoch with gradient accumulation.
Args:
epoch (int): The current epoch number.
"""
self.model.train()
pbar = tqdm(
colour="blue",
desc=f"rank: {self.local_rank}, Training Epoch: {epoch + 1}",
total=len(self.dataloader_train),
dynamic_ncols=True,
)
# Set the number of steps for gradient accumulation
accum_grad = self.kwargs.get("accum_grad", 1)
# Initialize the gradient accumulation
self.optim.zero_grad()
speed_stats = {}
time5 = time.perf_counter()
for batch_idx, batch in enumerate(self.dataloader_train):
self.batch_total += 1
time1 = time.perf_counter()
speed_stats["data_load"] = f"{time1-time5:0.3f}"
batch = to_device(batch, self.device)
my_context = (
self.model.no_sync if batch_idx % accum_grad != 0 else nullcontext
)
with my_context():
time2 = time.perf_counter()
retval = self.model(**batch)
torch.cuda.empty_cache()
time3 = time.perf_counter()
speed_stats["forward_time"] = f"{time3 - time2:0.3f}"
loss, stats, weight = retval
stats = {k: v for k, v in stats.items() if v is not None}
if self.use_ddp or self.use_fsdp:
# Apply weighted averaging for loss and stats
loss = (loss * weight.type(loss.dtype)).sum()
# if distributed, this method can also apply all_reduce()
stats, weight = recursive_average(stats, weight, distributed=True)
# Now weight is summation over all workers
loss /= weight
# Multiply world_size because DistributedDataParallel
# automatically normalizes the gradient by world_size.
loss *= self.world_size
# Scale the loss since we're not updating for every mini-batch
loss = loss / accum_grad
loss.backward()
time4 = time.perf_counter()
speed_stats["backward_time"] = f"{time4 - time3:0.3f}"
# Perform an optimizer step only after accumulating enough gradients
if (batch_idx + 1) % accum_grad == 0 or (batch_idx + 1) == len(
self.dataloader_train
):
# Perform gradient clipping if it is set
if self.kwargs.get("grad_clip", None) is not None:
grad_norm = torch.nn.utils.clip_grad_norm_(
self.model.parameters(),
max_norm=self.kwargs.get("grad_clip", 10.0),
norm_type=self.kwargs.get("grad_clip_type", 2.0),
)
if not torch.isfinite(grad_norm):
logging.warning(
f"The grad norm is {grad_norm}. Skipping updating the model."
)
self.optim.zero_grad() # Reset gradients
continue
# Execute an optimization step (update model parameters)
if self.use_ddp or self.use_fsdp:
dist.barrier()
self.optim.step()
self.scheduler.step()
# Clear gradients for the next accumulation stage
self.optim.zero_grad()
total_time = f"{time.perf_counter() - time5:0.3f}"
time5 = time.perf_counter()
speed_stats["optim_time"] = f"{time5 - time4:0.3f}"
speed_stats["total_time"] = total_time
if (batch_idx + 1) % self.log_interval == 0 or (batch_idx + 1) == len(
self.dataloader_train
):
pbar.update(self.log_interval)
gpu_info = (
"GPU, memory: {:.3f} GB, "
"{:.3f} GB, "
"{:.3f} GB, "
"{:.3f} GB".format(
torch.cuda.memory_allocated() / 1024 / 1024 / 1024,
torch.cuda.max_memory_allocated() / 1024 / 1024 / 1024,
torch.cuda.memory_reserved() / 1024 / 1024 / 1024,
torch.cuda.max_memory_reserved() / 1024 / 1024 / 1024,
)
)
lr = self.scheduler.get_last_lr()[0]
time_now = datetime.now()
time_now = time_now.strftime("%Y-%m-%d %H:%M:%S")
description = (
f"{time_now}, "
f"rank: {self.local_rank}, "
f"epoch: {epoch}/{self.max_epoch}, "
f"step: {batch_idx+1}/{len(self.dataloader_train)}, total: {self.batch_total}, "
f"(loss: {loss.detach().cpu().item():.3f}), "
f"(lr: {lr:.3e}), "
f"{[(k, round(v.cpu().item(), 3)) for k, v in stats.items()]}, "
f"{speed_stats}, "
f"{gpu_info}"
)
pbar.set_description(description)
if self.writer:
self.writer.add_scalar(
f"rank{self.local_rank}_Loss/train",
loss.item(),
self.batch_total,
)
self.writer.add_scalar(
f"rank{self.local_rank}_lr/train", lr, self.batch_total
)
for key, var in stats.items():
self.writer.add_scalar(
f"rank{self.local_rank}_{key}/train",
var.item(),
self.batch_total,
)
for key, var in speed_stats.items():
self.writer.add_scalar(
f"rank{self.local_rank}_{key}/train",
eval(var),
self.batch_total,
)
pbar.close()
def _validate_epoch(self, epoch):
"""
Defines the validation process for a single epoch.
Should be implemented with the actual model validation steps.
Args:
epoch (int): The current epoch number.
"""
self.model.eval()
with torch.no_grad():
pbar = tqdm(
colour="red",
desc=f"rank: {self.local_rank}, Validation Epoch: {epoch + 1}",
total=len(self.dataloader_val),
dynamic_ncols=True,
)
speed_stats = {}
time5 = time.perf_counter()
for batch_idx, batch in enumerate(self.dataloader_val):
time1 = time.perf_counter()
speed_stats["data_load"] = f"{time1 - time5:0.3f}"
batch = to_device(batch, self.device)
time2 = time.perf_counter()
retval = self.model(**batch)
time3 = time.perf_counter()
speed_stats["forward_time"] = f"{time3 - time2:0.3f}"
loss, stats, weight = retval
stats = {k: v for k, v in stats.items() if v is not None}
if self.use_ddp or self.use_fsdp:
# Apply weighted averaging for loss and stats
loss = (loss * weight.type(loss.dtype)).sum()
# if distributed, this method can also apply all_reduce()
stats, weight = recursive_average(stats, weight, distributed=True)
# Now weight is summation over all workers
loss /= weight
# Multiply world_size because DistributedDataParallel
# automatically normalizes the gradient by world_size.
loss *= self.world_size
# Scale the loss since we're not updating for every mini-batch
loss = loss
time4 = time.perf_counter()
if (batch_idx + 1) % self.log_interval == 0 or (batch_idx + 1) == len(
self.dataloader_val
):
pbar.update(self.log_interval)
time_now = datetime.now()
time_now = time_now.strftime("%Y-%m-%d %H:%M:%S")
description = (
f"{time_now}, "
f"rank: {self.local_rank}, "
f"validation epoch: {epoch}/{self.max_epoch}, "
f"step: {batch_idx+1}/{len(self.dataloader_val)}, "
f"(loss: {loss.detach().cpu().item():.3f}), "
f"{[(k, round(v.cpu().item(), 3)) for k, v in stats.items()]}, "
f"{speed_stats}, "
)
pbar.set_description(description)
if self.writer:
self.writer.add_scalar(
f"rank{self.local_rank}_Loss/val",
loss.item(),
epoch * len(self.dataloader_val) + batch_idx,
)
for key, var in stats.items():
self.writer.add_scalar(
f"rank{self.local_rank}_{key}/val",
var.item(),
epoch * len(self.dataloader_val) + batch_idx,
)
for key, var in speed_stats.items():
self.writer.add_scalar(
f"rank{self.local_rank}_{key}/val",
eval(var),
epoch * len(self.dataloader_val) + batch_idx,
)
|