File size: 11,746 Bytes
67c46fd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
import logging
import os
import shutil
from multiprocessing import Pool

import kaldiio
import numpy as np
import librosa
import torch.distributed as dist
import torchaudio


def filter_wav_text(data_dir, dataset):
    wav_file = os.path.join(data_dir, dataset, "wav.scp")
    text_file = os.path.join(data_dir, dataset, "text")
    with open(wav_file) as f_wav, open(text_file) as f_text:
        wav_lines = f_wav.readlines()
        text_lines = f_text.readlines()
    os.rename(wav_file, "{}.bak".format(wav_file))
    os.rename(text_file, "{}.bak".format(text_file))
    wav_dict = {}
    for line in wav_lines:
        parts = line.strip().split()
        if len(parts) < 2:
            continue
        wav_dict[parts[0]] = parts[1]
    text_dict = {}
    for line in text_lines:
        parts = line.strip().split()
        if len(parts) < 2:
            continue
        text_dict[parts[0]] = " ".join(parts[1:])
    filter_count = 0
    with open(wav_file, "w") as f_wav, open(text_file, "w") as f_text:
        for sample_name, wav_path in wav_dict.items():
            if sample_name in text_dict.keys():
                f_wav.write(sample_name + " " + wav_path + "\n")
                f_text.write(sample_name + " " + text_dict[sample_name] + "\n")
            else:
                filter_count += 1
    logging.info(
        "{}/{} samples in {} are filtered because of the mismatch between wav.scp and text".format(
            filter_count, len(wav_lines), dataset
        )
    )


def wav2num_frame(wav_path, frontend_conf):
    try:
        waveform, sampling_rate = torchaudio.load(wav_path)
    except:
        waveform, sampling_rate = librosa.load(wav_path)
        waveform = np.expand_dims(waveform, axis=0)
    n_frames = (waveform.shape[1] * 1000.0) / (
        sampling_rate * frontend_conf["frame_shift"] * frontend_conf["lfr_n"]
    )
    feature_dim = frontend_conf["n_mels"] * frontend_conf["lfr_m"]
    return n_frames, feature_dim


def calc_shape_core(root_path, args, idx):
    file_name = args.data_file_names.split(",")[0]
    data_name = args.dataset_conf.get("data_names", "speech,text").split(",")[0]
    scp_file = os.path.join(root_path, "{}.{}".format(file_name, idx))
    shape_file = os.path.join(root_path, "{}_shape.{}".format(data_name, idx))
    with open(scp_file) as f:
        lines = f.readlines()
    data_type = args.dataset_conf.get("data_types", "sound,text").split(",")[0]
    if data_type == "sound":
        frontend_conf = args.frontend_conf
        dataset_conf = args.dataset_conf
        length_min = (
            dataset_conf.speech_length_min
            if hasattr(dataset_conf, "{}_length_min".format(data_name))
            else -1
        )
        length_max = (
            dataset_conf.speech_length_max
            if hasattr(dataset_conf, "{}_length_max".format(data_name))
            else -1
        )
        with open(shape_file, "w") as f:
            for line in lines:
                sample_name, wav_path = line.strip().split()
                n_frames, feature_dim = wav2num_frame(wav_path, frontend_conf)
                write_flag = True
                if n_frames > 0 and length_min > 0:
                    write_flag = n_frames >= length_min
                if n_frames > 0 and length_max > 0:
                    write_flag = n_frames <= length_max
                if write_flag:
                    f.write(
                        "{} {},{}\n".format(
                            sample_name,
                            str(int(np.ceil(n_frames))),
                            str(int(feature_dim)),
                        )
                    )
                    f.flush()
    elif data_type == "kaldi_ark":
        dataset_conf = args.dataset_conf
        length_min = (
            dataset_conf.speech_length_min
            if hasattr(dataset_conf, "{}_length_min".format(data_name))
            else -1
        )
        length_max = (
            dataset_conf.speech_length_max
            if hasattr(dataset_conf, "{}_length_max".format(data_name))
            else -1
        )
        with open(shape_file, "w") as f:
            for line in lines:
                sample_name, feature_path = line.strip().split()
                feature = kaldiio.load_mat(feature_path)
                n_frames, feature_dim = feature.shape
                write_flag = True
                if n_frames > 0 and length_min > 0:
                    write_flag = n_frames >= length_min
                if n_frames > 0 and length_max > 0:
                    write_flag = n_frames <= length_max
                if write_flag:
                    f.write(
                        "{} {},{}\n".format(
                            sample_name,
                            str(int(np.ceil(n_frames))),
                            str(int(feature_dim)),
                        )
                    )
                    f.flush()
    elif data_type == "text":
        with open(shape_file, "w") as f:
            for line in lines:
                sample_name, text = line.strip().split(maxsplit=1)
                n_tokens = len(text.split())
                f.write("{} {}\n".format(sample_name, str(int(np.ceil(n_tokens)))))
                f.flush()
    else:
        raise RuntimeError("Unsupported data_type: {}".format(data_type))


def calc_shape(args, dataset, nj=64):
    data_name = args.dataset_conf.get("data_names", "speech,text").split(",")[0]
    shape_path = os.path.join(args.data_dir, dataset, "{}_shape".format(data_name))
    if os.path.exists(shape_path):
        logging.info("Shape file for small dataset already exists.")
        return

    split_shape_path = os.path.join(
        args.data_dir, dataset, "{}_shape_files".format(data_name)
    )
    if os.path.exists(split_shape_path):
        shutil.rmtree(split_shape_path)
    os.mkdir(split_shape_path)

    # split
    file_name = args.data_file_names.split(",")[0]
    scp_file = os.path.join(args.data_dir, dataset, file_name)
    with open(scp_file) as f:
        lines = f.readlines()
        num_lines = len(lines)
        num_job_lines = num_lines // nj
    start = 0
    for i in range(nj):
        end = start + num_job_lines
        file = os.path.join(split_shape_path, "{}.{}".format(file_name, str(i + 1)))
        with open(file, "w") as f:
            if i == nj - 1:
                f.writelines(lines[start:])
            else:
                f.writelines(lines[start:end])
        start = end

    p = Pool(nj)
    for i in range(nj):
        p.apply_async(calc_shape_core, args=(split_shape_path, args, str(i + 1)))
    logging.info("Generating shape files, please wait a few minutes...")
    p.close()
    p.join()

    # combine
    with open(shape_path, "w") as f:
        for i in range(nj):
            job_file = os.path.join(
                split_shape_path, "{}_shape.{}".format(data_name, str(i + 1))
            )
            with open(job_file) as job_f:
                lines = job_f.readlines()
                f.writelines(lines)
    logging.info("Generating shape files done.")


def generate_data_list(args, data_dir, dataset, nj=64):
    data_names = args.dataset_conf.get("data_names", "speech,text").split(",")
    file_names = args.data_file_names.split(",")
    concat_data_name = "_".join(data_names)
    list_file = os.path.join(data_dir, dataset, "{}_data.list".format(concat_data_name))
    if os.path.exists(list_file):
        logging.info("Data list for large dataset already exists.")
        return
    split_path = os.path.join(data_dir, dataset, "split")
    if os.path.exists(split_path):
        shutil.rmtree(split_path)
    os.mkdir(split_path)

    data_lines_list = []
    for file_name in file_names:
        with open(os.path.join(data_dir, dataset, file_name)) as f:
            lines = f.readlines()
            data_lines_list.append(lines)
    num_lines = len(data_lines_list[0])
    num_job_lines = num_lines // nj
    start = 0
    for i in range(nj):
        end = start + num_job_lines
        split_path_nj = os.path.join(split_path, str(i + 1))
        os.mkdir(split_path_nj)
        for file_id, file_name in enumerate(file_names):
            file = os.path.join(split_path_nj, file_name)
            with open(file, "w") as f:
                if i == nj - 1:
                    f.writelines(data_lines_list[file_id][start:])
                else:
                    f.writelines(data_lines_list[file_id][start:end])
        start = end

    with open(list_file, "w") as f_data:
        for i in range(nj):
            path = ""
            for file_name in file_names:
                path = path + " " + os.path.join(split_path, str(i + 1), file_name)
            f_data.write(path + "\n")


def prepare_data(args, distributed_option):
    data_names = args.dataset_conf.get("data_names", "speech,text").split(",")
    data_types = args.dataset_conf.get("data_types", "sound,text").split(",")
    file_names = args.data_file_names.split(",")
    batch_type = args.dataset_conf["batch_conf"]["batch_type"]
    print(
        "data_names: {}, data_types: {}, file_names: {}".format(
            data_names, data_types, file_names
        )
    )
    assert len(data_names) == len(data_types) == len(file_names)
    if args.dataset_type == "small":
        args.train_shape_file = [
            os.path.join(
                args.data_dir, args.train_set, "{}_shape".format(data_names[0])
            )
        ]
        args.valid_shape_file = [
            os.path.join(
                args.data_dir, args.valid_set, "{}_shape".format(data_names[0])
            )
        ]
        (
            args.train_data_path_and_name_and_type,
            args.valid_data_path_and_name_and_type,
        ) = ([], [])
        for file_name, data_name, data_type in zip(file_names, data_names, data_types):
            args.train_data_path_and_name_and_type.append(
                [
                    "{}/{}/{}".format(args.data_dir, args.train_set, file_name),
                    data_name,
                    data_type,
                ]
            )
            args.valid_data_path_and_name_and_type.append(
                [
                    "{}/{}/{}".format(args.data_dir, args.valid_set, file_name),
                    data_name,
                    data_type,
                ]
            )
        if os.path.exists(args.train_shape_file[0]):
            assert os.path.exists(args.valid_shape_file[0])
            print("shape file for small dataset already exists.")
            return
    else:
        concat_data_name = "_".join(data_names)
        args.train_data_file = os.path.join(
            args.data_dir, args.train_set, "{}_data.list".format(concat_data_name)
        )
        args.valid_data_file = os.path.join(
            args.data_dir, args.valid_set, "{}_data.list".format(concat_data_name)
        )
        if os.path.exists(args.train_data_file):
            assert os.path.exists(args.valid_data_file)
            print("data list for large dataset already exists.")
            return

    distributed = distributed_option.distributed
    if not distributed or distributed_option.dist_rank == 0:
        if hasattr(args, "filter_input") and args.filter_input:
            filter_wav_text(args.data_dir, args.train_set)
            filter_wav_text(args.data_dir, args.valid_set)

        if args.dataset_type == "small" and batch_type != "unsorted":
            calc_shape(args, args.train_set)
            calc_shape(args, args.valid_set)

        if args.dataset_type == "large":
            generate_data_list(args, args.data_dir, args.train_set)
            generate_data_list(args, args.data_dir, args.valid_set)

    if distributed:
        dist.barrier()