Spaces:
Running
Running
File size: 11,746 Bytes
67c46fd |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 |
import logging
import os
import shutil
from multiprocessing import Pool
import kaldiio
import numpy as np
import librosa
import torch.distributed as dist
import torchaudio
def filter_wav_text(data_dir, dataset):
wav_file = os.path.join(data_dir, dataset, "wav.scp")
text_file = os.path.join(data_dir, dataset, "text")
with open(wav_file) as f_wav, open(text_file) as f_text:
wav_lines = f_wav.readlines()
text_lines = f_text.readlines()
os.rename(wav_file, "{}.bak".format(wav_file))
os.rename(text_file, "{}.bak".format(text_file))
wav_dict = {}
for line in wav_lines:
parts = line.strip().split()
if len(parts) < 2:
continue
wav_dict[parts[0]] = parts[1]
text_dict = {}
for line in text_lines:
parts = line.strip().split()
if len(parts) < 2:
continue
text_dict[parts[0]] = " ".join(parts[1:])
filter_count = 0
with open(wav_file, "w") as f_wav, open(text_file, "w") as f_text:
for sample_name, wav_path in wav_dict.items():
if sample_name in text_dict.keys():
f_wav.write(sample_name + " " + wav_path + "\n")
f_text.write(sample_name + " " + text_dict[sample_name] + "\n")
else:
filter_count += 1
logging.info(
"{}/{} samples in {} are filtered because of the mismatch between wav.scp and text".format(
filter_count, len(wav_lines), dataset
)
)
def wav2num_frame(wav_path, frontend_conf):
try:
waveform, sampling_rate = torchaudio.load(wav_path)
except:
waveform, sampling_rate = librosa.load(wav_path)
waveform = np.expand_dims(waveform, axis=0)
n_frames = (waveform.shape[1] * 1000.0) / (
sampling_rate * frontend_conf["frame_shift"] * frontend_conf["lfr_n"]
)
feature_dim = frontend_conf["n_mels"] * frontend_conf["lfr_m"]
return n_frames, feature_dim
def calc_shape_core(root_path, args, idx):
file_name = args.data_file_names.split(",")[0]
data_name = args.dataset_conf.get("data_names", "speech,text").split(",")[0]
scp_file = os.path.join(root_path, "{}.{}".format(file_name, idx))
shape_file = os.path.join(root_path, "{}_shape.{}".format(data_name, idx))
with open(scp_file) as f:
lines = f.readlines()
data_type = args.dataset_conf.get("data_types", "sound,text").split(",")[0]
if data_type == "sound":
frontend_conf = args.frontend_conf
dataset_conf = args.dataset_conf
length_min = (
dataset_conf.speech_length_min
if hasattr(dataset_conf, "{}_length_min".format(data_name))
else -1
)
length_max = (
dataset_conf.speech_length_max
if hasattr(dataset_conf, "{}_length_max".format(data_name))
else -1
)
with open(shape_file, "w") as f:
for line in lines:
sample_name, wav_path = line.strip().split()
n_frames, feature_dim = wav2num_frame(wav_path, frontend_conf)
write_flag = True
if n_frames > 0 and length_min > 0:
write_flag = n_frames >= length_min
if n_frames > 0 and length_max > 0:
write_flag = n_frames <= length_max
if write_flag:
f.write(
"{} {},{}\n".format(
sample_name,
str(int(np.ceil(n_frames))),
str(int(feature_dim)),
)
)
f.flush()
elif data_type == "kaldi_ark":
dataset_conf = args.dataset_conf
length_min = (
dataset_conf.speech_length_min
if hasattr(dataset_conf, "{}_length_min".format(data_name))
else -1
)
length_max = (
dataset_conf.speech_length_max
if hasattr(dataset_conf, "{}_length_max".format(data_name))
else -1
)
with open(shape_file, "w") as f:
for line in lines:
sample_name, feature_path = line.strip().split()
feature = kaldiio.load_mat(feature_path)
n_frames, feature_dim = feature.shape
write_flag = True
if n_frames > 0 and length_min > 0:
write_flag = n_frames >= length_min
if n_frames > 0 and length_max > 0:
write_flag = n_frames <= length_max
if write_flag:
f.write(
"{} {},{}\n".format(
sample_name,
str(int(np.ceil(n_frames))),
str(int(feature_dim)),
)
)
f.flush()
elif data_type == "text":
with open(shape_file, "w") as f:
for line in lines:
sample_name, text = line.strip().split(maxsplit=1)
n_tokens = len(text.split())
f.write("{} {}\n".format(sample_name, str(int(np.ceil(n_tokens)))))
f.flush()
else:
raise RuntimeError("Unsupported data_type: {}".format(data_type))
def calc_shape(args, dataset, nj=64):
data_name = args.dataset_conf.get("data_names", "speech,text").split(",")[0]
shape_path = os.path.join(args.data_dir, dataset, "{}_shape".format(data_name))
if os.path.exists(shape_path):
logging.info("Shape file for small dataset already exists.")
return
split_shape_path = os.path.join(
args.data_dir, dataset, "{}_shape_files".format(data_name)
)
if os.path.exists(split_shape_path):
shutil.rmtree(split_shape_path)
os.mkdir(split_shape_path)
# split
file_name = args.data_file_names.split(",")[0]
scp_file = os.path.join(args.data_dir, dataset, file_name)
with open(scp_file) as f:
lines = f.readlines()
num_lines = len(lines)
num_job_lines = num_lines // nj
start = 0
for i in range(nj):
end = start + num_job_lines
file = os.path.join(split_shape_path, "{}.{}".format(file_name, str(i + 1)))
with open(file, "w") as f:
if i == nj - 1:
f.writelines(lines[start:])
else:
f.writelines(lines[start:end])
start = end
p = Pool(nj)
for i in range(nj):
p.apply_async(calc_shape_core, args=(split_shape_path, args, str(i + 1)))
logging.info("Generating shape files, please wait a few minutes...")
p.close()
p.join()
# combine
with open(shape_path, "w") as f:
for i in range(nj):
job_file = os.path.join(
split_shape_path, "{}_shape.{}".format(data_name, str(i + 1))
)
with open(job_file) as job_f:
lines = job_f.readlines()
f.writelines(lines)
logging.info("Generating shape files done.")
def generate_data_list(args, data_dir, dataset, nj=64):
data_names = args.dataset_conf.get("data_names", "speech,text").split(",")
file_names = args.data_file_names.split(",")
concat_data_name = "_".join(data_names)
list_file = os.path.join(data_dir, dataset, "{}_data.list".format(concat_data_name))
if os.path.exists(list_file):
logging.info("Data list for large dataset already exists.")
return
split_path = os.path.join(data_dir, dataset, "split")
if os.path.exists(split_path):
shutil.rmtree(split_path)
os.mkdir(split_path)
data_lines_list = []
for file_name in file_names:
with open(os.path.join(data_dir, dataset, file_name)) as f:
lines = f.readlines()
data_lines_list.append(lines)
num_lines = len(data_lines_list[0])
num_job_lines = num_lines // nj
start = 0
for i in range(nj):
end = start + num_job_lines
split_path_nj = os.path.join(split_path, str(i + 1))
os.mkdir(split_path_nj)
for file_id, file_name in enumerate(file_names):
file = os.path.join(split_path_nj, file_name)
with open(file, "w") as f:
if i == nj - 1:
f.writelines(data_lines_list[file_id][start:])
else:
f.writelines(data_lines_list[file_id][start:end])
start = end
with open(list_file, "w") as f_data:
for i in range(nj):
path = ""
for file_name in file_names:
path = path + " " + os.path.join(split_path, str(i + 1), file_name)
f_data.write(path + "\n")
def prepare_data(args, distributed_option):
data_names = args.dataset_conf.get("data_names", "speech,text").split(",")
data_types = args.dataset_conf.get("data_types", "sound,text").split(",")
file_names = args.data_file_names.split(",")
batch_type = args.dataset_conf["batch_conf"]["batch_type"]
print(
"data_names: {}, data_types: {}, file_names: {}".format(
data_names, data_types, file_names
)
)
assert len(data_names) == len(data_types) == len(file_names)
if args.dataset_type == "small":
args.train_shape_file = [
os.path.join(
args.data_dir, args.train_set, "{}_shape".format(data_names[0])
)
]
args.valid_shape_file = [
os.path.join(
args.data_dir, args.valid_set, "{}_shape".format(data_names[0])
)
]
(
args.train_data_path_and_name_and_type,
args.valid_data_path_and_name_and_type,
) = ([], [])
for file_name, data_name, data_type in zip(file_names, data_names, data_types):
args.train_data_path_and_name_and_type.append(
[
"{}/{}/{}".format(args.data_dir, args.train_set, file_name),
data_name,
data_type,
]
)
args.valid_data_path_and_name_and_type.append(
[
"{}/{}/{}".format(args.data_dir, args.valid_set, file_name),
data_name,
data_type,
]
)
if os.path.exists(args.train_shape_file[0]):
assert os.path.exists(args.valid_shape_file[0])
print("shape file for small dataset already exists.")
return
else:
concat_data_name = "_".join(data_names)
args.train_data_file = os.path.join(
args.data_dir, args.train_set, "{}_data.list".format(concat_data_name)
)
args.valid_data_file = os.path.join(
args.data_dir, args.valid_set, "{}_data.list".format(concat_data_name)
)
if os.path.exists(args.train_data_file):
assert os.path.exists(args.valid_data_file)
print("data list for large dataset already exists.")
return
distributed = distributed_option.distributed
if not distributed or distributed_option.dist_rank == 0:
if hasattr(args, "filter_input") and args.filter_input:
filter_wav_text(args.data_dir, args.train_set)
filter_wav_text(args.data_dir, args.valid_set)
if args.dataset_type == "small" and batch_type != "unsorted":
calc_shape(args, args.train_set)
calc_shape(args, args.valid_set)
if args.dataset_type == "large":
generate_data_list(args, args.data_dir, args.train_set)
generate_data_list(args, args.data_dir, args.valid_set)
if distributed:
dist.barrier()
|