Spaces:
Running
Running
File size: 10,758 Bytes
67c46fd b007bca 67c46fd |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 |
import os
import re
import json
import torchaudio
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
from transformers.generation.logits_process import LogitsProcessor
from transformers.generation.utils import LogitsProcessorList
from cosyvoice.cli.cosyvoice import CosyVoice
class RepetitionAwareLogitsProcessor(LogitsProcessor):
def __call__(
self, input_ids: torch.LongTensor, scores: torch.FloatTensor
) -> torch.FloatTensor:
window_size = 10
threshold = 0.1
window = input_ids[:, -window_size:]
if window.shape[1] < window_size:
return scores
last_tokens = window[:, -1].unsqueeze(-1)
repeat_counts = (window == last_tokens).sum(dim=1)
repeat_ratios = repeat_counts.float() / window_size
mask = repeat_ratios > threshold
scores[mask, last_tokens[mask].squeeze(-1)] = float("-inf")
return scores
class StepAudioTTS:
def __init__(
self,
model_path,
encoder,
):
# load optimus_ths for flash attention, make sure LD_LIBRARY_PATH has `nvidia/cuda_nvrtc/lib`
# if not, please manually set LD_LIBRARY_PATH=xxx/python3.10/site-packages/nvidia/cuda_nvrtc/lib
try:
if torch.__version__ >= "2.5":
torch.ops.load_library(os.path.join(model_path, 'lib/liboptimus_ths-torch2.5-cu124.cpython-310-x86_64-linux-gnu.so'))
elif torch.__version__ >= "2.3":
torch.ops.load_library(os.path.join(model_path, 'lib/liboptimus_ths-torch2.3-cu121.cpython-310-x86_64-linux-gnu.so'))
elif torch.__version__ >= "2.2":
torch.ops.load_library(os.path.join(model_path, 'lib/liboptimus_ths-torch2.2-cu121.cpython-310-x86_64-linux-gnu.so'))
print("Load optimus_ths successfully and flash attn would be enabled")
except Exception as err:
print(f"Fail to load optimus_ths and flash attn is disabled: {err}")
self.llm = AutoModelForCausalLM.from_pretrained(
model_path,
torch_dtype=torch.bfloat16,
device_map="cuda",
trust_remote_code=True,
)
self.tokenizer = AutoTokenizer.from_pretrained(
model_path, trust_remote_code=True
)
self.common_cosy_model = CosyVoice(
os.path.join(model_path, "CosyVoice-300M-25Hz")
)
self.music_cosy_model = CosyVoice(
os.path.join(model_path, "CosyVoice-300M-25Hz-Music")
)
self.encoder = encoder
self.sys_prompt_dict = {
"sys_prompt_for_rap": "请参考对话历史里的音色,用RAP方式将文本内容大声说唱出来。",
"sys_prompt_for_vocal": "请参考对话历史里的音色,用哼唱的方式将文本内容大声唱出来。",
"sys_prompt_wo_spk": '作为一名卓越的声优演员,你的任务是根据文本中()或()括号内标注的情感、语种或方言、音乐哼唱、语音调整等标签,以丰富细腻的情感和自然顺畅的语调来朗读文本。\n# 情感标签涵盖了多种情绪状态,包括但不限于:\n- "高兴1"\n- "高兴2"\n- "高兴3"\n- "生气1"\n- "生气2"\n- "生气3"\n- "悲伤1"\n- "惊讶"\n- "厌恶"\n- "恐惧"\n- "中立"\n- "低语1"\n- "撒娇1"\n- "疲惫"\n\n# 语种或方言标签包含多种语言或方言,包括但不限于:\n- "中文"\n- "英文"\n- "韩语"\n- "日语"\n- "四川话"\n- "粤语"\n- "广东话"\n\n# 音乐哼唱标签包含多种类型歌曲哼唱,包括但不限于:\n- "RAP"\n- "哼唱"\n\n# 语音调整标签,包括但不限于:\n- "慢速1"\n- "慢速2"\n- "慢速3"\n- "快速1"\n- "快速2"\n- "快速3"\n\n请在朗读时,根据这些情感标签的指示,调整你的情感、语气、语调和哼唱节奏,以确保文本的情感和意义得到准确而生动的传达,如果没有()或()括号,则根据文本语义内容自由演绎。',
"sys_prompt_with_spk": '作为一名卓越的声优演员,你的任务是根据文本中()或()括号内标注的情感、语种或方言、音乐哼唱、语音调整等标签,以丰富细腻的情感和自然顺畅的语调来朗读文本。\n# 情感标签涵盖了多种情绪状态,包括但不限于:\n- "高兴1"\n- "高兴2"\n- "高兴3"\n- "生气1"\n- "生气2"\n- "生气3"\n- "悲伤1"\n- "惊讶"\n- "厌恶"\n- "恐惧"\n- "中立"\n- "低语1"\n- "撒娇1"\n- "疲惫"\n\n# 语种或方言标签包含多种语言或方言,包括但不限于:\n- "中文"\n- "英文"\n- "韩语"\n- "日语"\n- "四川话"\n- "粤语"\n- "广东话"\n\n# 音乐哼唱标签包含多种类型歌曲哼唱,包括但不限于:\n- "RAP"\n- "哼唱"\n\n# 语音调整标签,包括但不限于:\n- "慢速1"\n- "慢速2"\n- "慢速3"\n- "快速1"\n- "快速2"\n- "快速3"\n\n请在朗读时,使用[{}]的声音,根据这些情感标签的指示,调整你的情感、语气、语调和哼唱节奏,以确保文本的情感和意义得到准确而生动的传达,如果没有()或()括号,则根据文本语义内容自由演绎。',
}
self.register_speakers()
def __call__(self, text: str, prompt_speaker: str):
instruction_name = self.detect_instruction_name(text)
if instruction_name in ("RAP", "VOCAL"):
prompt_speaker_info = self.speakers_info[
f"{prompt_speaker}{instruction_name}"
]
cosy_model = self.music_cosy_model
else:
prompt_speaker_info = self.speakers_info[prompt_speaker]
cosy_model = self.common_cosy_model
token_ids = self.tokenize(
text,
prompt_speaker_info["prompt_text"],
prompt_speaker,
prompt_speaker_info["prompt_code"],
)
output_ids = self.llm.generate(
torch.tensor([token_ids]).to(torch.long).to("cuda"),
max_length=8192,
temperature=0.7,
do_sample=True,
logits_processor=LogitsProcessorList([RepetitionAwareLogitsProcessor()]),
)
output_ids = output_ids[:, len(token_ids) : -1] # skip eos token
return (
cosy_model.token_to_wav_offline(
output_ids - 65536,
prompt_speaker_info["cosy_speech_feat"].to(torch.bfloat16),
prompt_speaker_info["cosy_speech_feat_len"],
prompt_speaker_info["cosy_prompt_token"],
prompt_speaker_info["cosy_prompt_token_len"],
prompt_speaker_info["cosy_speech_embedding"].to(torch.bfloat16),
),
22050,
)
def register_speakers(self):
self.speakers_info = {}
with open("speakers/speakers_info.json", "r") as f:
speakers_info = json.load(f)
for speaker_id, prompt_text in speakers_info.items():
prompt_wav_path = f"speakers/{speaker_id}_prompt.wav"
prompt_wav, prompt_wav_sr = torchaudio.load(prompt_wav_path)
_, _, speech_feat, speech_feat_len, speech_embedding = (
self.preprocess_prompt_wav(prompt_wav, prompt_wav_sr)
)
prompt_code, _, _ = self.encoder.wav2token(prompt_wav, prompt_wav_sr)
prompt_token = torch.tensor([prompt_code], dtype=torch.long) - 65536
prompt_token_len = torch.tensor([prompt_token.shape[1]], dtype=torch.long)
self.speakers_info[speaker_id] = {
"prompt_text": prompt_text,
"prompt_code": prompt_code,
"cosy_speech_feat": speech_feat.to(torch.bfloat16),
"cosy_speech_feat_len": speech_feat_len,
"cosy_speech_embedding": speech_embedding.to(torch.bfloat16),
"cosy_prompt_token": prompt_token,
"cosy_prompt_token_len": prompt_token_len,
}
print(f"Registered speaker: {speaker_id}")
def detect_instruction_name(self, text):
instruction_name = ""
match_group = re.match(r"^([(\(][^\(\)()]*[)\)]).*$", text, re.DOTALL)
if match_group is not None:
instruction = match_group.group(1)
instruction_name = instruction.strip("()()")
return instruction_name
def tokenize(
self, text: str, prompt_text: str, prompt_speaker: str, prompt_code: list
):
rap_or_vocal = self.detect_instruction_name(text) in ("RAP", "VOCAL")
if rap_or_vocal:
if "哼唱" in text:
prompt = self.sys_prompt_dict["sys_prompt_for_vocal"]
else:
prompt = self.sys_prompt_dict["sys_prompt_for_rap"]
elif prompt_speaker:
prompt = self.sys_prompt_dict["sys_prompt_with_spk"].format(prompt_speaker)
else:
prompt = self.sys_prompt_dict["sys_prompt_wo_spk"]
sys_tokens = self.tokenizer.encode(f"system\n{prompt}")
history = [1]
history.extend([4] + sys_tokens + [3])
_prefix_tokens = self.tokenizer.encode("\n")
part_tokens1 = self.tokenizer.encode("\n" + prompt_text)
question1_tokens = part_tokens1[len(_prefix_tokens) :]
part_tokens2 = self.tokenizer.encode("\n" + text)
question2_tokens = part_tokens2[len(_prefix_tokens) :]
qrole_toks = self.tokenizer.encode("human\n")
arole_toks = self.tokenizer.encode("assistant\n")
history.extend(
[4]
+ qrole_toks
+ question1_tokens
+ [3]
+ [4]
+ arole_toks
+ prompt_code
+ [3]
+ [4]
+ qrole_toks
+ question2_tokens
+ [3]
+ [4]
+ arole_toks
)
return history
def preprocess_prompt_wav(self, prompt_wav: torch.Tensor, prompt_wav_sr: int):
prompt_wav_16k = torchaudio.transforms.Resample(
orig_freq=prompt_wav_sr, new_freq=16000
)(prompt_wav)
prompt_wav_22k = torchaudio.transforms.Resample(
orig_freq=prompt_wav_sr, new_freq=22050
)(prompt_wav)
prompt_token, prompt_token_len = (
self.common_cosy_model.frontend._extract_speech_token(prompt_wav_16k)
)
speech_feat, speech_feat_len = (
self.common_cosy_model.frontend._extract_speech_feat(prompt_wav_22k)
)
speech_embedding = self.common_cosy_model.frontend._extract_spk_embedding(
prompt_wav_16k
)
return (
prompt_token,
prompt_token_len,
speech_feat,
speech_feat_len,
speech_embedding,
)
|