Spaces:
Running
Running
# Copyright (c) 2024 Alibaba Inc (authors: Xiang Lyu) | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
import os | |
import uuid | |
import time | |
from tqdm import tqdm | |
import torch | |
import torchaudio | |
from hyperpyyaml import load_hyperpyyaml | |
from cosyvoice.cli.frontend import CosyVoiceFrontEnd | |
from cosyvoice.cli.model import CosyVoiceModel | |
class CosyVoice: | |
def __init__( | |
self, | |
model_dir, | |
): | |
self.model_dir = model_dir | |
with open("{}/cosyvoice.yaml".format(model_dir), "r") as f: | |
configs = load_hyperpyyaml(f) | |
self.frontend = CosyVoiceFrontEnd( | |
configs["feat_extractor"], | |
"{}/campplus.onnx".format(model_dir), | |
"{}/speech_tokenizer_v1.onnx".format(model_dir), | |
) | |
self.model = CosyVoiceModel(configs["flow"], configs["hift"]) | |
self.model.load( | |
"{}/flow.pt".format(model_dir), | |
"{}/hift.pt".format(model_dir), | |
) | |
self.model.flow = self.model.flow.to(torch.bfloat16) | |
del configs | |
def token_to_wav_offline( | |
self, | |
speech_token, | |
speech_feat, | |
speech_feat_len, | |
prompt_token, | |
prompt_token_len, | |
embedding, | |
): | |
tts_mel = self.model.flow.inference( | |
token=speech_token.to(self.model.device), | |
token_len=torch.tensor([speech_token.size(1)], dtype=torch.int32).to( | |
self.model.device | |
), | |
prompt_token=prompt_token.to(self.model.device), | |
prompt_token_len=prompt_token_len.to(self.model.device), | |
prompt_feat=speech_feat.to(self.model.device), | |
prompt_feat_len=speech_feat_len.to(self.model.device), | |
embedding=embedding.to(self.model.device), | |
) | |
tts_speech = self.model.hift.inference(mel=tts_mel.float())[0].cpu() | |
return tts_speech | |