Spaces:
Running
Running
# Copyright (c) 2024 Alibaba Inc (authors: Xiang Lyu, Zhihao Du) | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
import time | |
import torch | |
import torch.nn.functional as F | |
from cosyvoice.matcha.flow_matching import BASECFM | |
class ConditionalCFM(BASECFM): | |
def __init__( | |
self, | |
in_channels, | |
cfm_params, | |
n_spks=1, | |
spk_emb_dim=64, | |
estimator: torch.nn.Module = None, | |
): | |
super().__init__( | |
n_feats=in_channels, | |
cfm_params=cfm_params, | |
n_spks=n_spks, | |
spk_emb_dim=spk_emb_dim, | |
) | |
self.t_scheduler = cfm_params.t_scheduler | |
self.training_cfg_rate = cfm_params.training_cfg_rate | |
self.inference_cfg_rate = cfm_params.inference_cfg_rate | |
in_channels = in_channels + (spk_emb_dim if n_spks > 0 else 0) | |
# Just change the architecture of the estimator here | |
self.estimator = estimator | |
self.inference_graphs = {} | |
self.inference_buffers = {} | |
# self.capture_inference() | |
def forward( | |
self, | |
mu, | |
mask, | |
n_timesteps, | |
temperature=1.0, | |
spks=None, | |
cond=None, | |
): | |
"""Forward diffusion | |
Args: | |
mu (torch.Tensor): output of encoder | |
shape: (batch_size, n_feats, mel_timesteps) | |
mask (torch.Tensor): output_mask | |
shape: (batch_size, 1, mel_timesteps) | |
n_timesteps (int): number of diffusion steps | |
temperature (float, optional): temperature for scaling noise. Defaults to 1.0. | |
spks (torch.Tensor, optional): speaker ids. Defaults to None. | |
shape: (batch_size, spk_emb_dim) | |
cond: Not used but kept for future purposes | |
Returns: | |
sample: generated mel-spectrogram | |
shape: (batch_size, n_feats, mel_timesteps) | |
""" | |
z = torch.randn_like(mu) * temperature | |
t_span = torch.linspace(0, 1, n_timesteps + 1, device=mu.device, dtype=mu.dtype) | |
if self.t_scheduler == "cosine": | |
t_span = 1 - torch.cos(t_span * 0.5 * torch.pi) | |
return self.solve_euler( | |
z, t_span=t_span, mu=mu, mask=mask, spks=spks, cond=cond | |
) | |
def capture_inference(self, seq_len_to_capture=list(range(128, 512, 8))): | |
start_time = time.time() | |
print( | |
f"capture_inference for ConditionalCFM solve euler, seq_len_to_capture: {seq_len_to_capture}" | |
) | |
for seq_len in seq_len_to_capture: | |
static_z = torch.randn( | |
1, 80, seq_len, device=torch.device("cuda"), dtype=torch.bfloat16 | |
) | |
static_t_span = torch.linspace( | |
0, 1, 11, device=torch.device("cuda"), dtype=torch.bfloat16 | |
) # only capture at 10 steps | |
static_mu = torch.randn( | |
1, 80, seq_len, device=torch.device("cuda"), dtype=torch.bfloat16 | |
) | |
static_mask = torch.ones( | |
1, 1, seq_len, device=torch.device("cuda"), dtype=torch.bfloat16 | |
) | |
static_spks = torch.randn( | |
1, 80, device=torch.device("cuda"), dtype=torch.bfloat16 | |
) | |
static_cond = torch.randn( | |
1, 80, seq_len, device=torch.device("cuda"), dtype=torch.float32 | |
) | |
static_out = torch.randn( | |
1, 80, seq_len, device=torch.device("cuda"), dtype=torch.bfloat16 | |
) | |
self._solve_euler_impl( | |
static_z, | |
t_span=static_t_span, | |
mu=static_mu, | |
mask=static_mask, | |
spks=static_spks, | |
cond=static_cond, | |
) | |
torch.cuda.synchronize() | |
g = torch.cuda.CUDAGraph() | |
with torch.cuda.graph(g): | |
static_out = self._solve_euler_impl( | |
static_z, | |
t_span=static_t_span, | |
mu=static_mu, | |
mask=static_mask, | |
spks=static_spks, | |
cond=static_cond, | |
) | |
self.inference_buffers[seq_len] = { | |
"z": static_z, | |
"t_span": static_t_span, | |
"mu": static_mu, | |
"mask": static_mask, | |
"spks": static_spks, | |
"cond": static_cond, | |
"out": static_out, | |
} | |
self.inference_graphs[seq_len] = g | |
end_time = time.time() | |
print( | |
f"capture_inference for ConditionalCFM solve euler, time elapsed: {end_time - start_time}" | |
) | |
def solve_euler(self, x, t_span, mu, mask, spks, cond): | |
if hasattr(self, "inference_graphs") and len(self.inference_graphs) > 0: | |
curr_seq_len = x.shape[2] | |
available_lengths = sorted(list(self.inference_graphs.keys())) | |
if curr_seq_len <= max(available_lengths): | |
target_len = min(available_lengths, key=lambda x: abs(x - curr_seq_len)) | |
if target_len == curr_seq_len: | |
padded_x = x | |
padded_mu = mu | |
padded_mask = mask | |
if cond is not None: | |
padded_cond = cond | |
else: | |
padded_x = torch.randn( | |
(x.shape[0], x.shape[1], target_len), | |
dtype=x.dtype, | |
device=x.device, | |
) | |
padded_x[:, :, :curr_seq_len] = x | |
padded_mu = torch.randn( | |
(mu.shape[0], mu.shape[1], target_len), | |
dtype=mu.dtype, | |
device=mu.device, | |
) | |
padded_mu[:, :, :curr_seq_len] = mu | |
# FIXME(ys): uses zeros and maskgroupnorm | |
padded_mask = torch.ones( | |
(mask.shape[0], mask.shape[1], target_len), | |
dtype=mask.dtype, | |
device=mask.device, | |
) | |
if cond is not None: | |
padded_cond = torch.randn( | |
(cond.shape[0], cond.shape[1], target_len), | |
dtype=cond.dtype, | |
device=cond.device, | |
) | |
padded_cond[:, :, :curr_seq_len] = cond | |
buffer = self.inference_buffers[target_len] | |
buffer["z"].copy_(padded_x) | |
buffer["t_span"].copy_(t_span) | |
buffer["mu"].copy_(padded_mu) | |
buffer["mask"].copy_(padded_mask) | |
buffer["spks"].copy_(spks) | |
if cond is not None: | |
buffer["cond"].copy_(padded_cond) | |
self.inference_graphs[target_len].replay() | |
output = buffer["out"][:, :, :curr_seq_len] | |
return output | |
return self._solve_euler_impl(x, t_span, mu, mask, spks, cond) | |
def _solve_euler_impl(self, x, t_span, mu, mask, spks, cond): | |
""" | |
Fixed euler solver for ODEs. | |
Args: | |
x (torch.Tensor): random noise | |
t_span (torch.Tensor): n_timesteps interpolated | |
shape: (n_timesteps + 1,) | |
mu (torch.Tensor): output of encoder | |
shape: (batch_size, n_feats, mel_timesteps) | |
mask (torch.Tensor): output_mask | |
shape: (batch_size, 1, mel_timesteps) | |
spks (torch.Tensor, optional): speaker ids. Defaults to None. | |
shape: (batch_size, spk_emb_dim) | |
cond: Not used but kept for future purposes | |
""" | |
t, _, dt = t_span[0], t_span[-1], t_span[1] - t_span[0] | |
t = t.unsqueeze(dim=0) | |
# I am storing this because I can later plot it by putting a debugger here and saving it to a file | |
# Or in future might add like a return_all_steps flag | |
sol = [] | |
for step in range(1, len(t_span)): | |
if self.inference_cfg_rate > 0: | |
x_double = torch.cat([x, x], dim=0) | |
mask_double = torch.cat([mask, mask], dim=0) | |
mu_double = torch.cat([mu, torch.zeros_like(mu)], dim=0) | |
t_double = torch.cat([t, t], dim=0) | |
spks_double = ( | |
torch.cat([spks, torch.zeros_like(spks)], dim=0) | |
if spks is not None | |
else None | |
) | |
cond_double = torch.cat([cond, torch.zeros_like(cond)], dim=0) | |
dphi_dt_double = self.forward_estimator( | |
x_double, mask_double, mu_double, t_double, spks_double, cond_double | |
) | |
dphi_dt, cfg_dphi_dt = torch.chunk(dphi_dt_double, 2, dim=0) | |
dphi_dt = ( | |
1.0 + self.inference_cfg_rate | |
) * dphi_dt - self.inference_cfg_rate * cfg_dphi_dt | |
else: | |
dphi_dt = self.forward_estimator(x, mask, mu, t, spks, cond) | |
x = x + dt * dphi_dt | |
t = t + dt | |
sol.append(x) | |
if step < len(t_span) - 1: | |
dt = t_span[step + 1] - t | |
return sol[-1] | |
def forward_estimator(self, x, mask, mu, t, spks, cond): | |
if isinstance(self.estimator, torch.nn.Module): | |
return self.estimator.forward(x, mask, mu, t, spks, cond) | |
else: | |
ort_inputs = { | |
"x": x.cpu().numpy(), | |
"mask": mask.cpu().numpy(), | |
"mu": mu.cpu().numpy(), | |
"t": t.cpu().numpy(), | |
"spks": spks.cpu().numpy(), | |
"cond": cond.cpu().numpy(), | |
} | |
output = self.estimator.run(None, ort_inputs)[0] | |
return torch.tensor(output, dtype=x.dtype, device=x.device) | |
def compute_loss(self, x1, mask, mu, spks=None, cond=None): | |
"""Computes diffusion loss | |
Args: | |
x1 (torch.Tensor): Target | |
shape: (batch_size, n_feats, mel_timesteps) | |
mask (torch.Tensor): target mask | |
shape: (batch_size, 1, mel_timesteps) | |
mu (torch.Tensor): output of encoder | |
shape: (batch_size, n_feats, mel_timesteps) | |
spks (torch.Tensor, optional): speaker embedding. Defaults to None. | |
shape: (batch_size, spk_emb_dim) | |
Returns: | |
loss: conditional flow matching loss | |
y: conditional flow | |
shape: (batch_size, n_feats, mel_timesteps) | |
""" | |
b, _, t = mu.shape | |
# random timestep | |
t = torch.rand([b, 1, 1], device=mu.device, dtype=mu.dtype) | |
if self.t_scheduler == "cosine": | |
t = 1 - torch.cos(t * 0.5 * torch.pi) | |
# sample noise p(x_0) | |
z = torch.randn_like(x1) | |
y = (1 - (1 - self.sigma_min) * t) * z + t * x1 | |
u = x1 - (1 - self.sigma_min) * z | |
# during training, we randomly drop condition to trade off mode coverage and sample fidelity | |
if self.training_cfg_rate > 0: | |
cfg_mask = torch.rand(b, device=x1.device) > self.training_cfg_rate | |
mu = mu * cfg_mask.view(-1, 1, 1) | |
spks = spks * cfg_mask.view(-1, 1) | |
cond = cond * cfg_mask.view(-1, 1, 1) | |
pred = self.estimator(y, mask, mu, t.squeeze(), spks, cond) | |
loss = F.mse_loss(pred * mask, u * mask, reduction="sum") / ( | |
torch.sum(mask) * u.shape[1] | |
) | |
return loss, y | |