Step-Audio / cosyvoice /flow /flow_matching.py
martin
initial
67c46fd
raw
history blame
12.1 kB
# Copyright (c) 2024 Alibaba Inc (authors: Xiang Lyu, Zhihao Du)
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import time
import torch
import torch.nn.functional as F
from cosyvoice.matcha.flow_matching import BASECFM
class ConditionalCFM(BASECFM):
def __init__(
self,
in_channels,
cfm_params,
n_spks=1,
spk_emb_dim=64,
estimator: torch.nn.Module = None,
):
super().__init__(
n_feats=in_channels,
cfm_params=cfm_params,
n_spks=n_spks,
spk_emb_dim=spk_emb_dim,
)
self.t_scheduler = cfm_params.t_scheduler
self.training_cfg_rate = cfm_params.training_cfg_rate
self.inference_cfg_rate = cfm_params.inference_cfg_rate
in_channels = in_channels + (spk_emb_dim if n_spks > 0 else 0)
# Just change the architecture of the estimator here
self.estimator = estimator
self.inference_graphs = {}
self.inference_buffers = {}
# self.capture_inference()
@torch.inference_mode()
def forward(
self,
mu,
mask,
n_timesteps,
temperature=1.0,
spks=None,
cond=None,
):
"""Forward diffusion
Args:
mu (torch.Tensor): output of encoder
shape: (batch_size, n_feats, mel_timesteps)
mask (torch.Tensor): output_mask
shape: (batch_size, 1, mel_timesteps)
n_timesteps (int): number of diffusion steps
temperature (float, optional): temperature for scaling noise. Defaults to 1.0.
spks (torch.Tensor, optional): speaker ids. Defaults to None.
shape: (batch_size, spk_emb_dim)
cond: Not used but kept for future purposes
Returns:
sample: generated mel-spectrogram
shape: (batch_size, n_feats, mel_timesteps)
"""
z = torch.randn_like(mu) * temperature
t_span = torch.linspace(0, 1, n_timesteps + 1, device=mu.device, dtype=mu.dtype)
if self.t_scheduler == "cosine":
t_span = 1 - torch.cos(t_span * 0.5 * torch.pi)
return self.solve_euler(
z, t_span=t_span, mu=mu, mask=mask, spks=spks, cond=cond
)
@torch.inference_mode()
def capture_inference(self, seq_len_to_capture=list(range(128, 512, 8))):
start_time = time.time()
print(
f"capture_inference for ConditionalCFM solve euler, seq_len_to_capture: {seq_len_to_capture}"
)
for seq_len in seq_len_to_capture:
static_z = torch.randn(
1, 80, seq_len, device=torch.device("cuda"), dtype=torch.bfloat16
)
static_t_span = torch.linspace(
0, 1, 11, device=torch.device("cuda"), dtype=torch.bfloat16
) # only capture at 10 steps
static_mu = torch.randn(
1, 80, seq_len, device=torch.device("cuda"), dtype=torch.bfloat16
)
static_mask = torch.ones(
1, 1, seq_len, device=torch.device("cuda"), dtype=torch.bfloat16
)
static_spks = torch.randn(
1, 80, device=torch.device("cuda"), dtype=torch.bfloat16
)
static_cond = torch.randn(
1, 80, seq_len, device=torch.device("cuda"), dtype=torch.float32
)
static_out = torch.randn(
1, 80, seq_len, device=torch.device("cuda"), dtype=torch.bfloat16
)
self._solve_euler_impl(
static_z,
t_span=static_t_span,
mu=static_mu,
mask=static_mask,
spks=static_spks,
cond=static_cond,
)
torch.cuda.synchronize()
g = torch.cuda.CUDAGraph()
with torch.cuda.graph(g):
static_out = self._solve_euler_impl(
static_z,
t_span=static_t_span,
mu=static_mu,
mask=static_mask,
spks=static_spks,
cond=static_cond,
)
self.inference_buffers[seq_len] = {
"z": static_z,
"t_span": static_t_span,
"mu": static_mu,
"mask": static_mask,
"spks": static_spks,
"cond": static_cond,
"out": static_out,
}
self.inference_graphs[seq_len] = g
end_time = time.time()
print(
f"capture_inference for ConditionalCFM solve euler, time elapsed: {end_time - start_time}"
)
def solve_euler(self, x, t_span, mu, mask, spks, cond):
if hasattr(self, "inference_graphs") and len(self.inference_graphs) > 0:
curr_seq_len = x.shape[2]
available_lengths = sorted(list(self.inference_graphs.keys()))
if curr_seq_len <= max(available_lengths):
target_len = min(available_lengths, key=lambda x: abs(x - curr_seq_len))
if target_len == curr_seq_len:
padded_x = x
padded_mu = mu
padded_mask = mask
if cond is not None:
padded_cond = cond
else:
padded_x = torch.randn(
(x.shape[0], x.shape[1], target_len),
dtype=x.dtype,
device=x.device,
)
padded_x[:, :, :curr_seq_len] = x
padded_mu = torch.randn(
(mu.shape[0], mu.shape[1], target_len),
dtype=mu.dtype,
device=mu.device,
)
padded_mu[:, :, :curr_seq_len] = mu
# FIXME(ys): uses zeros and maskgroupnorm
padded_mask = torch.ones(
(mask.shape[0], mask.shape[1], target_len),
dtype=mask.dtype,
device=mask.device,
)
if cond is not None:
padded_cond = torch.randn(
(cond.shape[0], cond.shape[1], target_len),
dtype=cond.dtype,
device=cond.device,
)
padded_cond[:, :, :curr_seq_len] = cond
buffer = self.inference_buffers[target_len]
buffer["z"].copy_(padded_x)
buffer["t_span"].copy_(t_span)
buffer["mu"].copy_(padded_mu)
buffer["mask"].copy_(padded_mask)
buffer["spks"].copy_(spks)
if cond is not None:
buffer["cond"].copy_(padded_cond)
self.inference_graphs[target_len].replay()
output = buffer["out"][:, :, :curr_seq_len]
return output
return self._solve_euler_impl(x, t_span, mu, mask, spks, cond)
def _solve_euler_impl(self, x, t_span, mu, mask, spks, cond):
"""
Fixed euler solver for ODEs.
Args:
x (torch.Tensor): random noise
t_span (torch.Tensor): n_timesteps interpolated
shape: (n_timesteps + 1,)
mu (torch.Tensor): output of encoder
shape: (batch_size, n_feats, mel_timesteps)
mask (torch.Tensor): output_mask
shape: (batch_size, 1, mel_timesteps)
spks (torch.Tensor, optional): speaker ids. Defaults to None.
shape: (batch_size, spk_emb_dim)
cond: Not used but kept for future purposes
"""
t, _, dt = t_span[0], t_span[-1], t_span[1] - t_span[0]
t = t.unsqueeze(dim=0)
# I am storing this because I can later plot it by putting a debugger here and saving it to a file
# Or in future might add like a return_all_steps flag
sol = []
for step in range(1, len(t_span)):
if self.inference_cfg_rate > 0:
x_double = torch.cat([x, x], dim=0)
mask_double = torch.cat([mask, mask], dim=0)
mu_double = torch.cat([mu, torch.zeros_like(mu)], dim=0)
t_double = torch.cat([t, t], dim=0)
spks_double = (
torch.cat([spks, torch.zeros_like(spks)], dim=0)
if spks is not None
else None
)
cond_double = torch.cat([cond, torch.zeros_like(cond)], dim=0)
dphi_dt_double = self.forward_estimator(
x_double, mask_double, mu_double, t_double, spks_double, cond_double
)
dphi_dt, cfg_dphi_dt = torch.chunk(dphi_dt_double, 2, dim=0)
dphi_dt = (
1.0 + self.inference_cfg_rate
) * dphi_dt - self.inference_cfg_rate * cfg_dphi_dt
else:
dphi_dt = self.forward_estimator(x, mask, mu, t, spks, cond)
x = x + dt * dphi_dt
t = t + dt
sol.append(x)
if step < len(t_span) - 1:
dt = t_span[step + 1] - t
return sol[-1]
def forward_estimator(self, x, mask, mu, t, spks, cond):
if isinstance(self.estimator, torch.nn.Module):
return self.estimator.forward(x, mask, mu, t, spks, cond)
else:
ort_inputs = {
"x": x.cpu().numpy(),
"mask": mask.cpu().numpy(),
"mu": mu.cpu().numpy(),
"t": t.cpu().numpy(),
"spks": spks.cpu().numpy(),
"cond": cond.cpu().numpy(),
}
output = self.estimator.run(None, ort_inputs)[0]
return torch.tensor(output, dtype=x.dtype, device=x.device)
def compute_loss(self, x1, mask, mu, spks=None, cond=None):
"""Computes diffusion loss
Args:
x1 (torch.Tensor): Target
shape: (batch_size, n_feats, mel_timesteps)
mask (torch.Tensor): target mask
shape: (batch_size, 1, mel_timesteps)
mu (torch.Tensor): output of encoder
shape: (batch_size, n_feats, mel_timesteps)
spks (torch.Tensor, optional): speaker embedding. Defaults to None.
shape: (batch_size, spk_emb_dim)
Returns:
loss: conditional flow matching loss
y: conditional flow
shape: (batch_size, n_feats, mel_timesteps)
"""
b, _, t = mu.shape
# random timestep
t = torch.rand([b, 1, 1], device=mu.device, dtype=mu.dtype)
if self.t_scheduler == "cosine":
t = 1 - torch.cos(t * 0.5 * torch.pi)
# sample noise p(x_0)
z = torch.randn_like(x1)
y = (1 - (1 - self.sigma_min) * t) * z + t * x1
u = x1 - (1 - self.sigma_min) * z
# during training, we randomly drop condition to trade off mode coverage and sample fidelity
if self.training_cfg_rate > 0:
cfg_mask = torch.rand(b, device=x1.device) > self.training_cfg_rate
mu = mu * cfg_mask.view(-1, 1, 1)
spks = spks * cfg_mask.view(-1, 1)
cond = cond * cfg_mask.view(-1, 1, 1)
pred = self.estimator(y, mask, mu, t.squeeze(), spks, cond)
loss = F.mse_loss(pred * mask, u * mask, reduction="sum") / (
torch.sum(mask) * u.shape[1]
)
return loss, y