Spaces:
Running
Running
import os | |
import json | |
import torch | |
import logging | |
import hydra | |
from omegaconf import DictConfig, OmegaConf | |
import concurrent.futures | |
import librosa | |
import torch.distributed as dist | |
def gen_jsonl_from_wav_text_list( | |
path, data_type_list=("source", "target"), jsonl_file_out: str = None, **kwargs | |
): | |
try: | |
rank = dist.get_rank() | |
world_size = dist.get_world_size() | |
except: | |
rank = 0 | |
world_size = 1 | |
cpu_cores = os.cpu_count() or 1 | |
print(f"convert wav.scp text to jsonl, ncpu: {cpu_cores}") | |
if rank == 0: | |
json_dict = {} | |
for data_type, data_file in zip(data_type_list, path): | |
json_dict[data_type] = {} | |
with open(data_file, "r") as f: | |
data_file_lists = f.readlines() | |
lines_for_each_th = (len(data_file_lists) - 1) // cpu_cores + 1 | |
task_num = cpu_cores if len(data_file_lists) > cpu_cores else 1 | |
with concurrent.futures.ThreadPoolExecutor( | |
max_workers=cpu_cores | |
) as executor: | |
futures = [ | |
executor.submit( | |
parse_context_length, | |
data_file_lists[ | |
i * lines_for_each_th : (i + 1) * lines_for_each_th | |
], | |
data_type, | |
) | |
for i in range(task_num) | |
] | |
for future in concurrent.futures.as_completed(futures): | |
json_dict[data_type].update(future.result()) | |
# print(json_dict) | |
with open(jsonl_file_out, "w") as f: | |
for key in json_dict[data_type_list[0]].keys(): | |
jsonl_line = {"key": key} | |
for data_file in data_type_list: | |
jsonl_line.update(json_dict[data_file][key]) | |
jsonl_line = json.dumps(jsonl_line, ensure_ascii=False) | |
f.write(jsonl_line + "\n") | |
f.flush() | |
else: | |
pass | |
if world_size > 1: | |
dist.barrier() | |
def parse_context_length(data_list: list, data_type: str): | |
res = {} | |
for i, line in enumerate(data_list): | |
key, line = line.strip().split(maxsplit=1) | |
line = line.strip() | |
if os.path.exists(line): | |
waveform, _ = librosa.load(line, sr=16000) | |
sample_num = len(waveform) | |
context_len = int(sample_num // 16000 * 1000 / 10) | |
else: | |
context_len = len(line.split()) if " " in line else len(line) | |
res[key] = {data_type: line, f"{data_type}_len": context_len} | |
return res | |
def main_hydra(cfg: DictConfig): | |
kwargs = OmegaConf.to_container(cfg, resolve=True) | |
scp_file_list = kwargs.get( | |
"scp_file_list", | |
( | |
"/Users/zhifu/funasr1.0/test_local/wav.scp", | |
"/Users/zhifu/funasr1.0/test_local/text.txt", | |
), | |
) | |
if isinstance(scp_file_list, str): | |
scp_file_list = eval(scp_file_list) | |
data_type_list = kwargs.get("data_type_list", ("source", "target")) | |
jsonl_file_out = kwargs.get( | |
"jsonl_file_out", "/Users/zhifu/funasr1.0/test_local/audio_datasets.jsonl" | |
) | |
gen_jsonl_from_wav_text_list( | |
scp_file_list, data_type_list=data_type_list, jsonl_file_out=jsonl_file_out | |
) | |
""" | |
python -m funasr_detach.datasets.audio_datasets.scp2jsonl \ | |
++scp_file_list='["/Users/zhifu/funasr1.0/test_local/wav.scp", "/Users/zhifu/funasr1.0/test_local/text.txt"]' \ | |
++data_type_list='["source", "target"]' \ | |
++jsonl_file_out=/Users/zhifu/funasr1.0/test_local/audio_datasets.jsonl | |
""" | |
if __name__ == "__main__": | |
main_hydra() | |