Spaces:
Running
Running
# Copyright 2020 Tomoki Hayashi | |
# Apache 2.0 (http://www.apache.org/licenses/LICENSE-2.0) | |
"""Conformer encoder definition.""" | |
import logging | |
from typing import Union, Dict, List, Tuple, Optional | |
import torch | |
from torch import nn | |
from funasr_detach.models.ctc.ctc import CTC | |
from funasr_detach.models.transformer.attention import ( | |
MultiHeadedAttention, # noqa: H301 | |
RelPositionMultiHeadedAttention, # noqa: H301 | |
LegacyRelPositionMultiHeadedAttention, # noqa: H301 | |
RelPositionMultiHeadedAttentionChunk, | |
) | |
from funasr_detach.models.transformer.embedding import ( | |
PositionalEncoding, # noqa: H301 | |
ScaledPositionalEncoding, # noqa: H301 | |
RelPositionalEncoding, # noqa: H301 | |
LegacyRelPositionalEncoding, # noqa: H301 | |
StreamingRelPositionalEncoding, | |
) | |
from funasr_detach.models.transformer.layer_norm import LayerNorm | |
from funasr_detach.models.transformer.utils.multi_layer_conv import Conv1dLinear | |
from funasr_detach.models.transformer.utils.multi_layer_conv import MultiLayeredConv1d | |
from funasr_detach.models.transformer.utils.nets_utils import get_activation | |
from funasr_detach.models.transformer.utils.nets_utils import make_pad_mask | |
from funasr_detach.models.transformer.utils.nets_utils import ( | |
TooShortUttError, | |
check_short_utt, | |
make_chunk_mask, | |
make_source_mask, | |
) | |
from funasr_detach.models.transformer.positionwise_feed_forward import ( | |
PositionwiseFeedForward, # noqa: H301 | |
) | |
from funasr_detach.models.transformer.utils.repeat import repeat, MultiBlocks | |
from funasr_detach.models.transformer.utils.subsampling import Conv2dSubsampling | |
from funasr_detach.models.transformer.utils.subsampling import Conv2dSubsampling2 | |
from funasr_detach.models.transformer.utils.subsampling import Conv2dSubsampling6 | |
from funasr_detach.models.transformer.utils.subsampling import Conv2dSubsampling8 | |
from funasr_detach.models.transformer.utils.subsampling import TooShortUttError | |
from funasr_detach.models.transformer.utils.subsampling import check_short_utt | |
from funasr_detach.models.transformer.utils.subsampling import Conv2dSubsamplingPad | |
from funasr_detach.models.transformer.utils.subsampling import StreamingConvInput | |
from funasr_detach.register import tables | |
class ConvolutionModule(nn.Module): | |
"""ConvolutionModule in Conformer model. | |
Args: | |
channels (int): The number of channels of conv layers. | |
kernel_size (int): Kernerl size of conv layers. | |
""" | |
def __init__(self, channels, kernel_size, activation=nn.ReLU(), bias=True): | |
"""Construct an ConvolutionModule object.""" | |
super(ConvolutionModule, self).__init__() | |
# kernerl_size should be a odd number for 'SAME' padding | |
assert (kernel_size - 1) % 2 == 0 | |
self.pointwise_conv1 = nn.Conv1d( | |
channels, | |
2 * channels, | |
kernel_size=1, | |
stride=1, | |
padding=0, | |
bias=bias, | |
) | |
self.depthwise_conv = nn.Conv1d( | |
channels, | |
channels, | |
kernel_size, | |
stride=1, | |
padding=(kernel_size - 1) // 2, | |
groups=channels, | |
bias=bias, | |
) | |
self.norm = nn.BatchNorm1d(channels) | |
self.pointwise_conv2 = nn.Conv1d( | |
channels, | |
channels, | |
kernel_size=1, | |
stride=1, | |
padding=0, | |
bias=bias, | |
) | |
self.activation = activation | |
def forward(self, x): | |
"""Compute convolution module. | |
Args: | |
x (torch.Tensor): Input tensor (#batch, time, channels). | |
Returns: | |
torch.Tensor: Output tensor (#batch, time, channels). | |
""" | |
# exchange the temporal dimension and the feature dimension | |
x = x.transpose(1, 2) | |
# GLU mechanism | |
x = self.pointwise_conv1(x) # (batch, 2*channel, dim) | |
x = nn.functional.glu(x, dim=1) # (batch, channel, dim) | |
# 1D Depthwise Conv | |
x = self.depthwise_conv(x) | |
x = self.activation(self.norm(x)) | |
x = self.pointwise_conv2(x) | |
return x.transpose(1, 2) | |
class EncoderLayer(nn.Module): | |
"""Encoder layer module. | |
Args: | |
size (int): Input dimension. | |
self_attn (torch.nn.Module): Self-attention module instance. | |
`MultiHeadedAttention` or `RelPositionMultiHeadedAttention` instance | |
can be used as the argument. | |
feed_forward (torch.nn.Module): Feed-forward module instance. | |
`PositionwiseFeedForward`, `MultiLayeredConv1d`, or `Conv1dLinear` instance | |
can be used as the argument. | |
feed_forward_macaron (torch.nn.Module): Additional feed-forward module instance. | |
`PositionwiseFeedForward`, `MultiLayeredConv1d`, or `Conv1dLinear` instance | |
can be used as the argument. | |
conv_module (torch.nn.Module): Convolution module instance. | |
`ConvlutionModule` instance can be used as the argument. | |
dropout_rate (float): Dropout rate. | |
normalize_before (bool): Whether to use layer_norm before the first block. | |
concat_after (bool): Whether to concat attention layer's input and output. | |
if True, additional linear will be applied. | |
i.e. x -> x + linear(concat(x, att(x))) | |
if False, no additional linear will be applied. i.e. x -> x + att(x) | |
stochastic_depth_rate (float): Proability to skip this layer. | |
During training, the layer may skip residual computation and return input | |
as-is with given probability. | |
""" | |
def __init__( | |
self, | |
size, | |
self_attn, | |
feed_forward, | |
feed_forward_macaron, | |
conv_module, | |
dropout_rate, | |
normalize_before=True, | |
concat_after=False, | |
stochastic_depth_rate=0.0, | |
): | |
"""Construct an EncoderLayer object.""" | |
super(EncoderLayer, self).__init__() | |
self.self_attn = self_attn | |
self.feed_forward = feed_forward | |
self.feed_forward_macaron = feed_forward_macaron | |
self.conv_module = conv_module | |
self.norm_ff = LayerNorm(size) # for the FNN module | |
self.norm_mha = LayerNorm(size) # for the MHA module | |
if feed_forward_macaron is not None: | |
self.norm_ff_macaron = LayerNorm(size) | |
self.ff_scale = 0.5 | |
else: | |
self.ff_scale = 1.0 | |
if self.conv_module is not None: | |
self.norm_conv = LayerNorm(size) # for the CNN module | |
self.norm_final = LayerNorm(size) # for the final output of the block | |
self.dropout = nn.Dropout(dropout_rate) | |
self.size = size | |
self.normalize_before = normalize_before | |
self.concat_after = concat_after | |
if self.concat_after: | |
self.concat_linear = nn.Linear(size + size, size) | |
self.stochastic_depth_rate = stochastic_depth_rate | |
def forward(self, x_input, mask, cache=None): | |
"""Compute encoded features. | |
Args: | |
x_input (Union[Tuple, torch.Tensor]): Input tensor w/ or w/o pos emb. | |
- w/ pos emb: Tuple of tensors [(#batch, time, size), (1, time, size)]. | |
- w/o pos emb: Tensor (#batch, time, size). | |
mask (torch.Tensor): Mask tensor for the input (#batch, time). | |
cache (torch.Tensor): Cache tensor of the input (#batch, time - 1, size). | |
Returns: | |
torch.Tensor: Output tensor (#batch, time, size). | |
torch.Tensor: Mask tensor (#batch, time). | |
""" | |
if isinstance(x_input, tuple): | |
x, pos_emb = x_input[0], x_input[1] | |
else: | |
x, pos_emb = x_input, None | |
skip_layer = False | |
# with stochastic depth, residual connection `x + f(x)` becomes | |
# `x <- x + 1 / (1 - p) * f(x)` at training time. | |
stoch_layer_coeff = 1.0 | |
if self.training and self.stochastic_depth_rate > 0: | |
skip_layer = torch.rand(1).item() < self.stochastic_depth_rate | |
stoch_layer_coeff = 1.0 / (1 - self.stochastic_depth_rate) | |
if skip_layer: | |
if cache is not None: | |
x = torch.cat([cache, x], dim=1) | |
if pos_emb is not None: | |
return (x, pos_emb), mask | |
return x, mask | |
# whether to use macaron style | |
if self.feed_forward_macaron is not None: | |
residual = x | |
if self.normalize_before: | |
x = self.norm_ff_macaron(x) | |
x = residual + stoch_layer_coeff * self.ff_scale * self.dropout( | |
self.feed_forward_macaron(x) | |
) | |
if not self.normalize_before: | |
x = self.norm_ff_macaron(x) | |
# multi-headed self-attention module | |
residual = x | |
if self.normalize_before: | |
x = self.norm_mha(x) | |
if cache is None: | |
x_q = x | |
else: | |
assert cache.shape == (x.shape[0], x.shape[1] - 1, self.size) | |
x_q = x[:, -1:, :] | |
residual = residual[:, -1:, :] | |
mask = None if mask is None else mask[:, -1:, :] | |
if pos_emb is not None: | |
x_att = self.self_attn(x_q, x, x, pos_emb, mask) | |
else: | |
x_att = self.self_attn(x_q, x, x, mask) | |
if self.concat_after: | |
x_concat = torch.cat((x, x_att), dim=-1) | |
x = residual + stoch_layer_coeff * self.concat_linear(x_concat) | |
else: | |
x = residual + stoch_layer_coeff * self.dropout(x_att) | |
if not self.normalize_before: | |
x = self.norm_mha(x) | |
# convolution module | |
if self.conv_module is not None: | |
residual = x | |
if self.normalize_before: | |
x = self.norm_conv(x) | |
x = residual + stoch_layer_coeff * self.dropout(self.conv_module(x)) | |
if not self.normalize_before: | |
x = self.norm_conv(x) | |
# feed forward module | |
residual = x | |
if self.normalize_before: | |
x = self.norm_ff(x) | |
x = residual + stoch_layer_coeff * self.ff_scale * self.dropout( | |
self.feed_forward(x) | |
) | |
if not self.normalize_before: | |
x = self.norm_ff(x) | |
if self.conv_module is not None: | |
x = self.norm_final(x) | |
if cache is not None: | |
x = torch.cat([cache, x], dim=1) | |
if pos_emb is not None: | |
return (x, pos_emb), mask | |
return x, mask | |
class ConformerEncoder(nn.Module): | |
"""Conformer encoder module. | |
Args: | |
input_size (int): Input dimension. | |
output_size (int): Dimension of attention. | |
attention_heads (int): The number of heads of multi head attention. | |
linear_units (int): The number of units of position-wise feed forward. | |
num_blocks (int): The number of decoder blocks. | |
dropout_rate (float): Dropout rate. | |
attention_dropout_rate (float): Dropout rate in attention. | |
positional_dropout_rate (float): Dropout rate after adding positional encoding. | |
input_layer (Union[str, torch.nn.Module]): Input layer type. | |
normalize_before (bool): Whether to use layer_norm before the first block. | |
concat_after (bool): Whether to concat attention layer's input and output. | |
If True, additional linear will be applied. | |
i.e. x -> x + linear(concat(x, att(x))) | |
If False, no additional linear will be applied. i.e. x -> x + att(x) | |
positionwise_layer_type (str): "linear", "conv1d", or "conv1d-linear". | |
positionwise_conv_kernel_size (int): Kernel size of positionwise conv1d layer. | |
rel_pos_type (str): Whether to use the latest relative positional encoding or | |
the legacy one. The legacy relative positional encoding will be deprecated | |
in the future. More Details can be found in | |
https://github.com/espnet/espnet/pull/2816. | |
encoder_pos_enc_layer_type (str): Encoder positional encoding layer type. | |
encoder_attn_layer_type (str): Encoder attention layer type. | |
activation_type (str): Encoder activation function type. | |
macaron_style (bool): Whether to use macaron style for positionwise layer. | |
use_cnn_module (bool): Whether to use convolution module. | |
zero_triu (bool): Whether to zero the upper triangular part of attention matrix. | |
cnn_module_kernel (int): Kernerl size of convolution module. | |
padding_idx (int): Padding idx for input_layer=embed. | |
""" | |
def __init__( | |
self, | |
input_size: int, | |
output_size: int = 256, | |
attention_heads: int = 4, | |
linear_units: int = 2048, | |
num_blocks: int = 6, | |
dropout_rate: float = 0.1, | |
positional_dropout_rate: float = 0.1, | |
attention_dropout_rate: float = 0.0, | |
input_layer: str = "conv2d", | |
normalize_before: bool = True, | |
concat_after: bool = False, | |
positionwise_layer_type: str = "linear", | |
positionwise_conv_kernel_size: int = 3, | |
macaron_style: bool = False, | |
rel_pos_type: str = "legacy", | |
pos_enc_layer_type: str = "rel_pos", | |
selfattention_layer_type: str = "rel_selfattn", | |
activation_type: str = "swish", | |
use_cnn_module: bool = True, | |
zero_triu: bool = False, | |
cnn_module_kernel: int = 31, | |
padding_idx: int = -1, | |
interctc_layer_idx: List[int] = [], | |
interctc_use_conditioning: bool = False, | |
stochastic_depth_rate: Union[float, List[float]] = 0.0, | |
): | |
super().__init__() | |
self._output_size = output_size | |
if rel_pos_type == "legacy": | |
if pos_enc_layer_type == "rel_pos": | |
pos_enc_layer_type = "legacy_rel_pos" | |
if selfattention_layer_type == "rel_selfattn": | |
selfattention_layer_type = "legacy_rel_selfattn" | |
elif rel_pos_type == "latest": | |
assert selfattention_layer_type != "legacy_rel_selfattn" | |
assert pos_enc_layer_type != "legacy_rel_pos" | |
else: | |
raise ValueError("unknown rel_pos_type: " + rel_pos_type) | |
activation = get_activation(activation_type) | |
if pos_enc_layer_type == "abs_pos": | |
pos_enc_class = PositionalEncoding | |
elif pos_enc_layer_type == "scaled_abs_pos": | |
pos_enc_class = ScaledPositionalEncoding | |
elif pos_enc_layer_type == "rel_pos": | |
assert selfattention_layer_type == "rel_selfattn" | |
pos_enc_class = RelPositionalEncoding | |
elif pos_enc_layer_type == "legacy_rel_pos": | |
assert selfattention_layer_type == "legacy_rel_selfattn" | |
pos_enc_class = LegacyRelPositionalEncoding | |
logging.warning( | |
"Using legacy_rel_pos and it will be deprecated in the future." | |
) | |
else: | |
raise ValueError("unknown pos_enc_layer: " + pos_enc_layer_type) | |
if input_layer == "linear": | |
self.embed = torch.nn.Sequential( | |
torch.nn.Linear(input_size, output_size), | |
torch.nn.LayerNorm(output_size), | |
torch.nn.Dropout(dropout_rate), | |
pos_enc_class(output_size, positional_dropout_rate), | |
) | |
elif input_layer == "conv2d": | |
self.embed = Conv2dSubsampling( | |
input_size, | |
output_size, | |
dropout_rate, | |
pos_enc_class(output_size, positional_dropout_rate), | |
) | |
elif input_layer == "conv2dpad": | |
self.embed = Conv2dSubsamplingPad( | |
input_size, | |
output_size, | |
dropout_rate, | |
pos_enc_class(output_size, positional_dropout_rate), | |
) | |
elif input_layer == "conv2d2": | |
self.embed = Conv2dSubsampling2( | |
input_size, | |
output_size, | |
dropout_rate, | |
pos_enc_class(output_size, positional_dropout_rate), | |
) | |
elif input_layer == "conv2d6": | |
self.embed = Conv2dSubsampling6( | |
input_size, | |
output_size, | |
dropout_rate, | |
pos_enc_class(output_size, positional_dropout_rate), | |
) | |
elif input_layer == "conv2d8": | |
self.embed = Conv2dSubsampling8( | |
input_size, | |
output_size, | |
dropout_rate, | |
pos_enc_class(output_size, positional_dropout_rate), | |
) | |
elif input_layer == "embed": | |
self.embed = torch.nn.Sequential( | |
torch.nn.Embedding(input_size, output_size, padding_idx=padding_idx), | |
pos_enc_class(output_size, positional_dropout_rate), | |
) | |
elif isinstance(input_layer, torch.nn.Module): | |
self.embed = torch.nn.Sequential( | |
input_layer, | |
pos_enc_class(output_size, positional_dropout_rate), | |
) | |
elif input_layer is None: | |
self.embed = torch.nn.Sequential( | |
pos_enc_class(output_size, positional_dropout_rate) | |
) | |
else: | |
raise ValueError("unknown input_layer: " + input_layer) | |
self.normalize_before = normalize_before | |
if positionwise_layer_type == "linear": | |
positionwise_layer = PositionwiseFeedForward | |
positionwise_layer_args = ( | |
output_size, | |
linear_units, | |
dropout_rate, | |
activation, | |
) | |
elif positionwise_layer_type == "conv1d": | |
positionwise_layer = MultiLayeredConv1d | |
positionwise_layer_args = ( | |
output_size, | |
linear_units, | |
positionwise_conv_kernel_size, | |
dropout_rate, | |
) | |
elif positionwise_layer_type == "conv1d-linear": | |
positionwise_layer = Conv1dLinear | |
positionwise_layer_args = ( | |
output_size, | |
linear_units, | |
positionwise_conv_kernel_size, | |
dropout_rate, | |
) | |
else: | |
raise NotImplementedError("Support only linear or conv1d.") | |
if selfattention_layer_type == "selfattn": | |
encoder_selfattn_layer = MultiHeadedAttention | |
encoder_selfattn_layer_args = ( | |
attention_heads, | |
output_size, | |
attention_dropout_rate, | |
) | |
elif selfattention_layer_type == "legacy_rel_selfattn": | |
assert pos_enc_layer_type == "legacy_rel_pos" | |
encoder_selfattn_layer = LegacyRelPositionMultiHeadedAttention | |
encoder_selfattn_layer_args = ( | |
attention_heads, | |
output_size, | |
attention_dropout_rate, | |
) | |
logging.warning( | |
"Using legacy_rel_selfattn and it will be deprecated in the future." | |
) | |
elif selfattention_layer_type == "rel_selfattn": | |
assert pos_enc_layer_type == "rel_pos" | |
encoder_selfattn_layer = RelPositionMultiHeadedAttention | |
encoder_selfattn_layer_args = ( | |
attention_heads, | |
output_size, | |
attention_dropout_rate, | |
zero_triu, | |
) | |
else: | |
raise ValueError("unknown encoder_attn_layer: " + selfattention_layer_type) | |
convolution_layer = ConvolutionModule | |
convolution_layer_args = (output_size, cnn_module_kernel, activation) | |
if isinstance(stochastic_depth_rate, float): | |
stochastic_depth_rate = [stochastic_depth_rate] * num_blocks | |
if len(stochastic_depth_rate) != num_blocks: | |
raise ValueError( | |
f"Length of stochastic_depth_rate ({len(stochastic_depth_rate)}) " | |
f"should be equal to num_blocks ({num_blocks})" | |
) | |
self.encoders = repeat( | |
num_blocks, | |
lambda lnum: EncoderLayer( | |
output_size, | |
encoder_selfattn_layer(*encoder_selfattn_layer_args), | |
positionwise_layer(*positionwise_layer_args), | |
positionwise_layer(*positionwise_layer_args) if macaron_style else None, | |
convolution_layer(*convolution_layer_args) if use_cnn_module else None, | |
dropout_rate, | |
normalize_before, | |
concat_after, | |
stochastic_depth_rate[lnum], | |
), | |
) | |
if self.normalize_before: | |
self.after_norm = LayerNorm(output_size) | |
self.interctc_layer_idx = interctc_layer_idx | |
if len(interctc_layer_idx) > 0: | |
assert 0 < min(interctc_layer_idx) and max(interctc_layer_idx) < num_blocks | |
self.interctc_use_conditioning = interctc_use_conditioning | |
self.conditioning_layer = None | |
def output_size(self) -> int: | |
return self._output_size | |
def forward( | |
self, | |
xs_pad: torch.Tensor, | |
ilens: torch.Tensor, | |
prev_states: torch.Tensor = None, | |
ctc: CTC = None, | |
) -> Tuple[torch.Tensor, torch.Tensor, Optional[torch.Tensor]]: | |
"""Calculate forward propagation. | |
Args: | |
xs_pad (torch.Tensor): Input tensor (#batch, L, input_size). | |
ilens (torch.Tensor): Input length (#batch). | |
prev_states (torch.Tensor): Not to be used now. | |
Returns: | |
torch.Tensor: Output tensor (#batch, L, output_size). | |
torch.Tensor: Output length (#batch). | |
torch.Tensor: Not to be used now. | |
""" | |
masks = (~make_pad_mask(ilens)[:, None, :]).to(xs_pad.device) | |
if ( | |
isinstance(self.embed, Conv2dSubsampling) | |
or isinstance(self.embed, Conv2dSubsampling2) | |
or isinstance(self.embed, Conv2dSubsampling6) | |
or isinstance(self.embed, Conv2dSubsampling8) | |
or isinstance(self.embed, Conv2dSubsamplingPad) | |
): | |
short_status, limit_size = check_short_utt(self.embed, xs_pad.size(1)) | |
if short_status: | |
raise TooShortUttError( | |
f"has {xs_pad.size(1)} frames and is too short for subsampling " | |
+ f"(it needs more than {limit_size} frames), return empty results", | |
xs_pad.size(1), | |
limit_size, | |
) | |
xs_pad, masks = self.embed(xs_pad, masks) | |
else: | |
xs_pad = self.embed(xs_pad) | |
intermediate_outs = [] | |
if len(self.interctc_layer_idx) == 0: | |
xs_pad, masks = self.encoders(xs_pad, masks) | |
else: | |
for layer_idx, encoder_layer in enumerate(self.encoders): | |
xs_pad, masks = encoder_layer(xs_pad, masks) | |
if layer_idx + 1 in self.interctc_layer_idx: | |
encoder_out = xs_pad | |
if isinstance(encoder_out, tuple): | |
encoder_out = encoder_out[0] | |
# intermediate outputs are also normalized | |
if self.normalize_before: | |
encoder_out = self.after_norm(encoder_out) | |
intermediate_outs.append((layer_idx + 1, encoder_out)) | |
if self.interctc_use_conditioning: | |
ctc_out = ctc.softmax(encoder_out) | |
if isinstance(xs_pad, tuple): | |
x, pos_emb = xs_pad | |
x = x + self.conditioning_layer(ctc_out) | |
xs_pad = (x, pos_emb) | |
else: | |
xs_pad = xs_pad + self.conditioning_layer(ctc_out) | |
if isinstance(xs_pad, tuple): | |
xs_pad = xs_pad[0] | |
if self.normalize_before: | |
xs_pad = self.after_norm(xs_pad) | |
olens = masks.squeeze(1).sum(1) | |
if len(intermediate_outs) > 0: | |
return (xs_pad, intermediate_outs), olens, None | |
return xs_pad, olens, None | |
class CausalConvolution(torch.nn.Module): | |
"""ConformerConvolution module definition. | |
Args: | |
channels: The number of channels. | |
kernel_size: Size of the convolving kernel. | |
activation: Type of activation function. | |
norm_args: Normalization module arguments. | |
causal: Whether to use causal convolution (set to True if streaming). | |
""" | |
def __init__( | |
self, | |
channels: int, | |
kernel_size: int, | |
activation: torch.nn.Module = torch.nn.ReLU(), | |
norm_args: Dict = {}, | |
causal: bool = False, | |
) -> None: | |
"""Construct an ConformerConvolution object.""" | |
super().__init__() | |
assert (kernel_size - 1) % 2 == 0 | |
self.kernel_size = kernel_size | |
self.pointwise_conv1 = torch.nn.Conv1d( | |
channels, | |
2 * channels, | |
kernel_size=1, | |
stride=1, | |
padding=0, | |
) | |
if causal: | |
self.lorder = kernel_size - 1 | |
padding = 0 | |
else: | |
self.lorder = 0 | |
padding = (kernel_size - 1) // 2 | |
self.depthwise_conv = torch.nn.Conv1d( | |
channels, | |
channels, | |
kernel_size, | |
stride=1, | |
padding=padding, | |
groups=channels, | |
) | |
self.norm = torch.nn.BatchNorm1d(channels, **norm_args) | |
self.pointwise_conv2 = torch.nn.Conv1d( | |
channels, | |
channels, | |
kernel_size=1, | |
stride=1, | |
padding=0, | |
) | |
self.activation = activation | |
def forward( | |
self, | |
x: torch.Tensor, | |
cache: Optional[torch.Tensor] = None, | |
right_context: int = 0, | |
) -> Tuple[torch.Tensor, torch.Tensor]: | |
"""Compute convolution module. | |
Args: | |
x: ConformerConvolution input sequences. (B, T, D_hidden) | |
cache: ConformerConvolution input cache. (1, conv_kernel, D_hidden) | |
right_context: Number of frames in right context. | |
Returns: | |
x: ConformerConvolution output sequences. (B, T, D_hidden) | |
cache: ConformerConvolution output cache. (1, conv_kernel, D_hidden) | |
""" | |
x = self.pointwise_conv1(x.transpose(1, 2)) | |
x = torch.nn.functional.glu(x, dim=1) | |
if self.lorder > 0: | |
if cache is None: | |
x = torch.nn.functional.pad(x, (self.lorder, 0), "constant", 0.0) | |
else: | |
x = torch.cat([cache, x], dim=2) | |
if right_context > 0: | |
cache = x[:, :, -(self.lorder + right_context) : -right_context] | |
else: | |
cache = x[:, :, -self.lorder :] | |
x = self.depthwise_conv(x) | |
x = self.activation(self.norm(x)) | |
x = self.pointwise_conv2(x).transpose(1, 2) | |
return x, cache | |
class ChunkEncoderLayer(torch.nn.Module): | |
"""Chunk Conformer module definition. | |
Args: | |
block_size: Input/output size. | |
self_att: Self-attention module instance. | |
feed_forward: Feed-forward module instance. | |
feed_forward_macaron: Feed-forward module instance for macaron network. | |
conv_mod: Convolution module instance. | |
norm_class: Normalization module class. | |
norm_args: Normalization module arguments. | |
dropout_rate: Dropout rate. | |
""" | |
def __init__( | |
self, | |
block_size: int, | |
self_att: torch.nn.Module, | |
feed_forward: torch.nn.Module, | |
feed_forward_macaron: torch.nn.Module, | |
conv_mod: torch.nn.Module, | |
norm_class: torch.nn.Module = LayerNorm, | |
norm_args: Dict = {}, | |
dropout_rate: float = 0.0, | |
) -> None: | |
"""Construct a Conformer object.""" | |
super().__init__() | |
self.self_att = self_att | |
self.feed_forward = feed_forward | |
self.feed_forward_macaron = feed_forward_macaron | |
self.feed_forward_scale = 0.5 | |
self.conv_mod = conv_mod | |
self.norm_feed_forward = norm_class(block_size, **norm_args) | |
self.norm_self_att = norm_class(block_size, **norm_args) | |
self.norm_macaron = norm_class(block_size, **norm_args) | |
self.norm_conv = norm_class(block_size, **norm_args) | |
self.norm_final = norm_class(block_size, **norm_args) | |
self.dropout = torch.nn.Dropout(dropout_rate) | |
self.block_size = block_size | |
self.cache = None | |
def reset_streaming_cache(self, left_context: int, device: torch.device) -> None: | |
"""Initialize/Reset self-attention and convolution modules cache for streaming. | |
Args: | |
left_context: Number of left frames during chunk-by-chunk inference. | |
device: Device to use for cache tensor. | |
""" | |
self.cache = [ | |
torch.zeros( | |
(1, left_context, self.block_size), | |
device=device, | |
), | |
torch.zeros( | |
( | |
1, | |
self.block_size, | |
self.conv_mod.kernel_size - 1, | |
), | |
device=device, | |
), | |
] | |
def forward( | |
self, | |
x: torch.Tensor, | |
pos_enc: torch.Tensor, | |
mask: torch.Tensor, | |
chunk_mask: Optional[torch.Tensor] = None, | |
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]: | |
"""Encode input sequences. | |
Args: | |
x: Conformer input sequences. (B, T, D_block) | |
pos_enc: Positional embedding sequences. (B, 2 * (T - 1), D_block) | |
mask: Source mask. (B, T) | |
chunk_mask: Chunk mask. (T_2, T_2) | |
Returns: | |
x: Conformer output sequences. (B, T, D_block) | |
mask: Source mask. (B, T) | |
pos_enc: Positional embedding sequences. (B, 2 * (T - 1), D_block) | |
""" | |
residual = x | |
x = self.norm_macaron(x) | |
x = residual + self.feed_forward_scale * self.dropout( | |
self.feed_forward_macaron(x) | |
) | |
residual = x | |
x = self.norm_self_att(x) | |
x_q = x | |
x = residual + self.dropout( | |
self.self_att( | |
x_q, | |
x, | |
x, | |
pos_enc, | |
mask, | |
chunk_mask=chunk_mask, | |
) | |
) | |
residual = x | |
x = self.norm_conv(x) | |
x, _ = self.conv_mod(x) | |
x = residual + self.dropout(x) | |
residual = x | |
x = self.norm_feed_forward(x) | |
x = residual + self.feed_forward_scale * self.dropout(self.feed_forward(x)) | |
x = self.norm_final(x) | |
return x, mask, pos_enc | |
def chunk_forward( | |
self, | |
x: torch.Tensor, | |
pos_enc: torch.Tensor, | |
mask: torch.Tensor, | |
chunk_size: int = 16, | |
left_context: int = 0, | |
right_context: int = 0, | |
) -> Tuple[torch.Tensor, torch.Tensor]: | |
"""Encode chunk of input sequence. | |
Args: | |
x: Conformer input sequences. (B, T, D_block) | |
pos_enc: Positional embedding sequences. (B, 2 * (T - 1), D_block) | |
mask: Source mask. (B, T_2) | |
left_context: Number of frames in left context. | |
right_context: Number of frames in right context. | |
Returns: | |
x: Conformer output sequences. (B, T, D_block) | |
pos_enc: Positional embedding sequences. (B, 2 * (T - 1), D_block) | |
""" | |
residual = x | |
x = self.norm_macaron(x) | |
x = residual + self.feed_forward_scale * self.feed_forward_macaron(x) | |
residual = x | |
x = self.norm_self_att(x) | |
if left_context > 0: | |
key = torch.cat([self.cache[0], x], dim=1) | |
else: | |
key = x | |
val = key | |
if right_context > 0: | |
att_cache = key[:, -(left_context + right_context) : -right_context, :] | |
else: | |
att_cache = key[:, -left_context:, :] | |
x = residual + self.self_att( | |
x, | |
key, | |
val, | |
pos_enc, | |
mask, | |
left_context=left_context, | |
) | |
residual = x | |
x = self.norm_conv(x) | |
x, conv_cache = self.conv_mod( | |
x, cache=self.cache[1], right_context=right_context | |
) | |
x = residual + x | |
residual = x | |
x = self.norm_feed_forward(x) | |
x = residual + self.feed_forward_scale * self.feed_forward(x) | |
x = self.norm_final(x) | |
self.cache = [att_cache, conv_cache] | |
return x, pos_enc | |
class ConformerChunkEncoder(torch.nn.Module): | |
"""Encoder module definition. | |
Args: | |
input_size: Input size. | |
body_conf: Encoder body configuration. | |
input_conf: Encoder input configuration. | |
main_conf: Encoder main configuration. | |
""" | |
def __init__( | |
self, | |
input_size: int, | |
output_size: int = 256, | |
attention_heads: int = 4, | |
linear_units: int = 2048, | |
num_blocks: int = 6, | |
dropout_rate: float = 0.1, | |
positional_dropout_rate: float = 0.1, | |
attention_dropout_rate: float = 0.0, | |
embed_vgg_like: bool = False, | |
normalize_before: bool = True, | |
concat_after: bool = False, | |
positionwise_layer_type: str = "linear", | |
positionwise_conv_kernel_size: int = 3, | |
macaron_style: bool = False, | |
rel_pos_type: str = "legacy", | |
pos_enc_layer_type: str = "rel_pos", | |
selfattention_layer_type: str = "rel_selfattn", | |
activation_type: str = "swish", | |
use_cnn_module: bool = True, | |
zero_triu: bool = False, | |
norm_type: str = "layer_norm", | |
cnn_module_kernel: int = 31, | |
conv_mod_norm_eps: float = 0.00001, | |
conv_mod_norm_momentum: float = 0.1, | |
simplified_att_score: bool = False, | |
dynamic_chunk_training: bool = False, | |
short_chunk_threshold: float = 0.75, | |
short_chunk_size: int = 25, | |
left_chunk_size: int = 0, | |
time_reduction_factor: int = 1, | |
unified_model_training: bool = False, | |
default_chunk_size: int = 16, | |
jitter_range: int = 4, | |
subsampling_factor: int = 1, | |
) -> None: | |
"""Construct an Encoder object.""" | |
super().__init__() | |
self.embed = StreamingConvInput( | |
input_size=input_size, | |
conv_size=output_size, | |
subsampling_factor=subsampling_factor, | |
vgg_like=embed_vgg_like, | |
output_size=output_size, | |
) | |
self.pos_enc = StreamingRelPositionalEncoding( | |
output_size, | |
positional_dropout_rate, | |
) | |
activation = get_activation(activation_type) | |
pos_wise_args = ( | |
output_size, | |
linear_units, | |
positional_dropout_rate, | |
activation, | |
) | |
conv_mod_norm_args = { | |
"eps": conv_mod_norm_eps, | |
"momentum": conv_mod_norm_momentum, | |
} | |
conv_mod_args = ( | |
output_size, | |
cnn_module_kernel, | |
activation, | |
conv_mod_norm_args, | |
dynamic_chunk_training or unified_model_training, | |
) | |
mult_att_args = ( | |
attention_heads, | |
output_size, | |
attention_dropout_rate, | |
simplified_att_score, | |
) | |
fn_modules = [] | |
for _ in range(num_blocks): | |
module = lambda: ChunkEncoderLayer( | |
output_size, | |
RelPositionMultiHeadedAttentionChunk(*mult_att_args), | |
PositionwiseFeedForward(*pos_wise_args), | |
PositionwiseFeedForward(*pos_wise_args), | |
CausalConvolution(*conv_mod_args), | |
dropout_rate=dropout_rate, | |
) | |
fn_modules.append(module) | |
self.encoders = MultiBlocks( | |
[fn() for fn in fn_modules], | |
output_size, | |
) | |
self._output_size = output_size | |
self.dynamic_chunk_training = dynamic_chunk_training | |
self.short_chunk_threshold = short_chunk_threshold | |
self.short_chunk_size = short_chunk_size | |
self.left_chunk_size = left_chunk_size | |
self.unified_model_training = unified_model_training | |
self.default_chunk_size = default_chunk_size | |
self.jitter_range = jitter_range | |
self.time_reduction_factor = time_reduction_factor | |
def output_size(self) -> int: | |
return self._output_size | |
def get_encoder_input_raw_size(self, size: int, hop_length: int) -> int: | |
"""Return the corresponding number of sample for a given chunk size, in frames. | |
Where size is the number of features frames after applying subsampling. | |
Args: | |
size: Number of frames after subsampling. | |
hop_length: Frontend's hop length | |
Returns: | |
: Number of raw samples | |
""" | |
return self.embed.get_size_before_subsampling(size) * hop_length | |
def get_encoder_input_size(self, size: int) -> int: | |
"""Return the corresponding number of sample for a given chunk size, in frames. | |
Where size is the number of features frames after applying subsampling. | |
Args: | |
size: Number of frames after subsampling. | |
Returns: | |
: Number of raw samples | |
""" | |
return self.embed.get_size_before_subsampling(size) | |
def reset_streaming_cache(self, left_context: int, device: torch.device) -> None: | |
"""Initialize/Reset encoder streaming cache. | |
Args: | |
left_context: Number of frames in left context. | |
device: Device ID. | |
""" | |
return self.encoders.reset_streaming_cache(left_context, device) | |
def forward( | |
self, | |
x: torch.Tensor, | |
x_len: torch.Tensor, | |
) -> Tuple[torch.Tensor, torch.Tensor]: | |
"""Encode input sequences. | |
Args: | |
x: Encoder input features. (B, T_in, F) | |
x_len: Encoder input features lengths. (B,) | |
Returns: | |
x: Encoder outputs. (B, T_out, D_enc) | |
x_len: Encoder outputs lenghts. (B,) | |
""" | |
short_status, limit_size = check_short_utt( | |
self.embed.subsampling_factor, x.size(1) | |
) | |
if short_status: | |
raise TooShortUttError( | |
f"has {x.size(1)} frames and is too short for subsampling " | |
+ f"(it needs more than {limit_size} frames), return empty results", | |
x.size(1), | |
limit_size, | |
) | |
mask = make_source_mask(x_len).to(x.device) | |
if self.unified_model_training: | |
if self.training: | |
chunk_size = ( | |
self.default_chunk_size | |
+ torch.randint( | |
-self.jitter_range, self.jitter_range + 1, (1,) | |
).item() | |
) | |
else: | |
chunk_size = self.default_chunk_size | |
x, mask = self.embed(x, mask, chunk_size) | |
pos_enc = self.pos_enc(x) | |
chunk_mask = make_chunk_mask( | |
x.size(1), | |
chunk_size, | |
left_chunk_size=self.left_chunk_size, | |
device=x.device, | |
) | |
x_utt = self.encoders( | |
x, | |
pos_enc, | |
mask, | |
chunk_mask=None, | |
) | |
x_chunk = self.encoders( | |
x, | |
pos_enc, | |
mask, | |
chunk_mask=chunk_mask, | |
) | |
olens = mask.eq(0).sum(1) | |
if self.time_reduction_factor > 1: | |
x_utt = x_utt[:, :: self.time_reduction_factor, :] | |
x_chunk = x_chunk[:, :: self.time_reduction_factor, :] | |
olens = torch.floor_divide(olens - 1, self.time_reduction_factor) + 1 | |
return x_utt, x_chunk, olens | |
elif self.dynamic_chunk_training: | |
max_len = x.size(1) | |
if self.training: | |
chunk_size = torch.randint(1, max_len, (1,)).item() | |
if chunk_size > (max_len * self.short_chunk_threshold): | |
chunk_size = max_len | |
else: | |
chunk_size = (chunk_size % self.short_chunk_size) + 1 | |
else: | |
chunk_size = self.default_chunk_size | |
x, mask = self.embed(x, mask, chunk_size) | |
pos_enc = self.pos_enc(x) | |
chunk_mask = make_chunk_mask( | |
x.size(1), | |
chunk_size, | |
left_chunk_size=self.left_chunk_size, | |
device=x.device, | |
) | |
else: | |
x, mask = self.embed(x, mask, None) | |
pos_enc = self.pos_enc(x) | |
chunk_mask = None | |
x = self.encoders( | |
x, | |
pos_enc, | |
mask, | |
chunk_mask=chunk_mask, | |
) | |
olens = mask.eq(0).sum(1) | |
if self.time_reduction_factor > 1: | |
x = x[:, :: self.time_reduction_factor, :] | |
olens = torch.floor_divide(olens - 1, self.time_reduction_factor) + 1 | |
return x, olens, None | |
def full_utt_forward( | |
self, | |
x: torch.Tensor, | |
x_len: torch.Tensor, | |
) -> Tuple[torch.Tensor, torch.Tensor]: | |
"""Encode input sequences. | |
Args: | |
x: Encoder input features. (B, T_in, F) | |
x_len: Encoder input features lengths. (B,) | |
Returns: | |
x: Encoder outputs. (B, T_out, D_enc) | |
x_len: Encoder outputs lenghts. (B,) | |
""" | |
short_status, limit_size = check_short_utt( | |
self.embed.subsampling_factor, x.size(1) | |
) | |
if short_status: | |
raise TooShortUttError( | |
f"has {x.size(1)} frames and is too short for subsampling " | |
+ f"(it needs more than {limit_size} frames), return empty results", | |
x.size(1), | |
limit_size, | |
) | |
mask = make_source_mask(x_len).to(x.device) | |
x, mask = self.embed(x, mask, None) | |
pos_enc = self.pos_enc(x) | |
x_utt = self.encoders( | |
x, | |
pos_enc, | |
mask, | |
chunk_mask=None, | |
) | |
if self.time_reduction_factor > 1: | |
x_utt = x_utt[:, :: self.time_reduction_factor, :] | |
return x_utt | |
def simu_chunk_forward( | |
self, | |
x: torch.Tensor, | |
x_len: torch.Tensor, | |
chunk_size: int = 16, | |
left_context: int = 32, | |
right_context: int = 0, | |
) -> torch.Tensor: | |
short_status, limit_size = check_short_utt( | |
self.embed.subsampling_factor, x.size(1) | |
) | |
if short_status: | |
raise TooShortUttError( | |
f"has {x.size(1)} frames and is too short for subsampling " | |
+ f"(it needs more than {limit_size} frames), return empty results", | |
x.size(1), | |
limit_size, | |
) | |
mask = make_source_mask(x_len) | |
x, mask = self.embed(x, mask, chunk_size) | |
pos_enc = self.pos_enc(x) | |
chunk_mask = make_chunk_mask( | |
x.size(1), | |
chunk_size, | |
left_chunk_size=self.left_chunk_size, | |
device=x.device, | |
) | |
x = self.encoders( | |
x, | |
pos_enc, | |
mask, | |
chunk_mask=chunk_mask, | |
) | |
olens = mask.eq(0).sum(1) | |
if self.time_reduction_factor > 1: | |
x = x[:, :: self.time_reduction_factor, :] | |
return x | |
def chunk_forward( | |
self, | |
x: torch.Tensor, | |
x_len: torch.Tensor, | |
processed_frames: torch.tensor, | |
chunk_size: int = 16, | |
left_context: int = 32, | |
right_context: int = 0, | |
) -> torch.Tensor: | |
"""Encode input sequences as chunks. | |
Args: | |
x: Encoder input features. (1, T_in, F) | |
x_len: Encoder input features lengths. (1,) | |
processed_frames: Number of frames already seen. | |
left_context: Number of frames in left context. | |
right_context: Number of frames in right context. | |
Returns: | |
x: Encoder outputs. (B, T_out, D_enc) | |
""" | |
mask = make_source_mask(x_len) | |
x, mask = self.embed(x, mask, None) | |
if left_context > 0: | |
processed_mask = ( | |
torch.arange(left_context, device=x.device) | |
.view(1, left_context) | |
.flip(1) | |
) | |
processed_mask = processed_mask >= processed_frames | |
mask = torch.cat([processed_mask, mask], dim=1) | |
pos_enc = self.pos_enc(x, left_context=left_context) | |
x = self.encoders.chunk_forward( | |
x, | |
pos_enc, | |
mask, | |
chunk_size=chunk_size, | |
left_context=left_context, | |
right_context=right_context, | |
) | |
if right_context > 0: | |
x = x[:, 0:-right_context, :] | |
if self.time_reduction_factor > 1: | |
x = x[:, :: self.time_reduction_factor, :] | |
return x | |