martin
initial
67c46fd
raw
history blame
45.3 kB
# Copyright 2020 Tomoki Hayashi
# Apache 2.0 (http://www.apache.org/licenses/LICENSE-2.0)
"""Conformer encoder definition."""
import logging
from typing import Union, Dict, List, Tuple, Optional
import torch
from torch import nn
from funasr_detach.models.ctc.ctc import CTC
from funasr_detach.models.transformer.attention import (
MultiHeadedAttention, # noqa: H301
RelPositionMultiHeadedAttention, # noqa: H301
LegacyRelPositionMultiHeadedAttention, # noqa: H301
RelPositionMultiHeadedAttentionChunk,
)
from funasr_detach.models.transformer.embedding import (
PositionalEncoding, # noqa: H301
ScaledPositionalEncoding, # noqa: H301
RelPositionalEncoding, # noqa: H301
LegacyRelPositionalEncoding, # noqa: H301
StreamingRelPositionalEncoding,
)
from funasr_detach.models.transformer.layer_norm import LayerNorm
from funasr_detach.models.transformer.utils.multi_layer_conv import Conv1dLinear
from funasr_detach.models.transformer.utils.multi_layer_conv import MultiLayeredConv1d
from funasr_detach.models.transformer.utils.nets_utils import get_activation
from funasr_detach.models.transformer.utils.nets_utils import make_pad_mask
from funasr_detach.models.transformer.utils.nets_utils import (
TooShortUttError,
check_short_utt,
make_chunk_mask,
make_source_mask,
)
from funasr_detach.models.transformer.positionwise_feed_forward import (
PositionwiseFeedForward, # noqa: H301
)
from funasr_detach.models.transformer.utils.repeat import repeat, MultiBlocks
from funasr_detach.models.transformer.utils.subsampling import Conv2dSubsampling
from funasr_detach.models.transformer.utils.subsampling import Conv2dSubsampling2
from funasr_detach.models.transformer.utils.subsampling import Conv2dSubsampling6
from funasr_detach.models.transformer.utils.subsampling import Conv2dSubsampling8
from funasr_detach.models.transformer.utils.subsampling import TooShortUttError
from funasr_detach.models.transformer.utils.subsampling import check_short_utt
from funasr_detach.models.transformer.utils.subsampling import Conv2dSubsamplingPad
from funasr_detach.models.transformer.utils.subsampling import StreamingConvInput
from funasr_detach.register import tables
class ConvolutionModule(nn.Module):
"""ConvolutionModule in Conformer model.
Args:
channels (int): The number of channels of conv layers.
kernel_size (int): Kernerl size of conv layers.
"""
def __init__(self, channels, kernel_size, activation=nn.ReLU(), bias=True):
"""Construct an ConvolutionModule object."""
super(ConvolutionModule, self).__init__()
# kernerl_size should be a odd number for 'SAME' padding
assert (kernel_size - 1) % 2 == 0
self.pointwise_conv1 = nn.Conv1d(
channels,
2 * channels,
kernel_size=1,
stride=1,
padding=0,
bias=bias,
)
self.depthwise_conv = nn.Conv1d(
channels,
channels,
kernel_size,
stride=1,
padding=(kernel_size - 1) // 2,
groups=channels,
bias=bias,
)
self.norm = nn.BatchNorm1d(channels)
self.pointwise_conv2 = nn.Conv1d(
channels,
channels,
kernel_size=1,
stride=1,
padding=0,
bias=bias,
)
self.activation = activation
def forward(self, x):
"""Compute convolution module.
Args:
x (torch.Tensor): Input tensor (#batch, time, channels).
Returns:
torch.Tensor: Output tensor (#batch, time, channels).
"""
# exchange the temporal dimension and the feature dimension
x = x.transpose(1, 2)
# GLU mechanism
x = self.pointwise_conv1(x) # (batch, 2*channel, dim)
x = nn.functional.glu(x, dim=1) # (batch, channel, dim)
# 1D Depthwise Conv
x = self.depthwise_conv(x)
x = self.activation(self.norm(x))
x = self.pointwise_conv2(x)
return x.transpose(1, 2)
class EncoderLayer(nn.Module):
"""Encoder layer module.
Args:
size (int): Input dimension.
self_attn (torch.nn.Module): Self-attention module instance.
`MultiHeadedAttention` or `RelPositionMultiHeadedAttention` instance
can be used as the argument.
feed_forward (torch.nn.Module): Feed-forward module instance.
`PositionwiseFeedForward`, `MultiLayeredConv1d`, or `Conv1dLinear` instance
can be used as the argument.
feed_forward_macaron (torch.nn.Module): Additional feed-forward module instance.
`PositionwiseFeedForward`, `MultiLayeredConv1d`, or `Conv1dLinear` instance
can be used as the argument.
conv_module (torch.nn.Module): Convolution module instance.
`ConvlutionModule` instance can be used as the argument.
dropout_rate (float): Dropout rate.
normalize_before (bool): Whether to use layer_norm before the first block.
concat_after (bool): Whether to concat attention layer's input and output.
if True, additional linear will be applied.
i.e. x -> x + linear(concat(x, att(x)))
if False, no additional linear will be applied. i.e. x -> x + att(x)
stochastic_depth_rate (float): Proability to skip this layer.
During training, the layer may skip residual computation and return input
as-is with given probability.
"""
def __init__(
self,
size,
self_attn,
feed_forward,
feed_forward_macaron,
conv_module,
dropout_rate,
normalize_before=True,
concat_after=False,
stochastic_depth_rate=0.0,
):
"""Construct an EncoderLayer object."""
super(EncoderLayer, self).__init__()
self.self_attn = self_attn
self.feed_forward = feed_forward
self.feed_forward_macaron = feed_forward_macaron
self.conv_module = conv_module
self.norm_ff = LayerNorm(size) # for the FNN module
self.norm_mha = LayerNorm(size) # for the MHA module
if feed_forward_macaron is not None:
self.norm_ff_macaron = LayerNorm(size)
self.ff_scale = 0.5
else:
self.ff_scale = 1.0
if self.conv_module is not None:
self.norm_conv = LayerNorm(size) # for the CNN module
self.norm_final = LayerNorm(size) # for the final output of the block
self.dropout = nn.Dropout(dropout_rate)
self.size = size
self.normalize_before = normalize_before
self.concat_after = concat_after
if self.concat_after:
self.concat_linear = nn.Linear(size + size, size)
self.stochastic_depth_rate = stochastic_depth_rate
def forward(self, x_input, mask, cache=None):
"""Compute encoded features.
Args:
x_input (Union[Tuple, torch.Tensor]): Input tensor w/ or w/o pos emb.
- w/ pos emb: Tuple of tensors [(#batch, time, size), (1, time, size)].
- w/o pos emb: Tensor (#batch, time, size).
mask (torch.Tensor): Mask tensor for the input (#batch, time).
cache (torch.Tensor): Cache tensor of the input (#batch, time - 1, size).
Returns:
torch.Tensor: Output tensor (#batch, time, size).
torch.Tensor: Mask tensor (#batch, time).
"""
if isinstance(x_input, tuple):
x, pos_emb = x_input[0], x_input[1]
else:
x, pos_emb = x_input, None
skip_layer = False
# with stochastic depth, residual connection `x + f(x)` becomes
# `x <- x + 1 / (1 - p) * f(x)` at training time.
stoch_layer_coeff = 1.0
if self.training and self.stochastic_depth_rate > 0:
skip_layer = torch.rand(1).item() < self.stochastic_depth_rate
stoch_layer_coeff = 1.0 / (1 - self.stochastic_depth_rate)
if skip_layer:
if cache is not None:
x = torch.cat([cache, x], dim=1)
if pos_emb is not None:
return (x, pos_emb), mask
return x, mask
# whether to use macaron style
if self.feed_forward_macaron is not None:
residual = x
if self.normalize_before:
x = self.norm_ff_macaron(x)
x = residual + stoch_layer_coeff * self.ff_scale * self.dropout(
self.feed_forward_macaron(x)
)
if not self.normalize_before:
x = self.norm_ff_macaron(x)
# multi-headed self-attention module
residual = x
if self.normalize_before:
x = self.norm_mha(x)
if cache is None:
x_q = x
else:
assert cache.shape == (x.shape[0], x.shape[1] - 1, self.size)
x_q = x[:, -1:, :]
residual = residual[:, -1:, :]
mask = None if mask is None else mask[:, -1:, :]
if pos_emb is not None:
x_att = self.self_attn(x_q, x, x, pos_emb, mask)
else:
x_att = self.self_attn(x_q, x, x, mask)
if self.concat_after:
x_concat = torch.cat((x, x_att), dim=-1)
x = residual + stoch_layer_coeff * self.concat_linear(x_concat)
else:
x = residual + stoch_layer_coeff * self.dropout(x_att)
if not self.normalize_before:
x = self.norm_mha(x)
# convolution module
if self.conv_module is not None:
residual = x
if self.normalize_before:
x = self.norm_conv(x)
x = residual + stoch_layer_coeff * self.dropout(self.conv_module(x))
if not self.normalize_before:
x = self.norm_conv(x)
# feed forward module
residual = x
if self.normalize_before:
x = self.norm_ff(x)
x = residual + stoch_layer_coeff * self.ff_scale * self.dropout(
self.feed_forward(x)
)
if not self.normalize_before:
x = self.norm_ff(x)
if self.conv_module is not None:
x = self.norm_final(x)
if cache is not None:
x = torch.cat([cache, x], dim=1)
if pos_emb is not None:
return (x, pos_emb), mask
return x, mask
@tables.register("encoder_classes", "ConformerEncoder")
class ConformerEncoder(nn.Module):
"""Conformer encoder module.
Args:
input_size (int): Input dimension.
output_size (int): Dimension of attention.
attention_heads (int): The number of heads of multi head attention.
linear_units (int): The number of units of position-wise feed forward.
num_blocks (int): The number of decoder blocks.
dropout_rate (float): Dropout rate.
attention_dropout_rate (float): Dropout rate in attention.
positional_dropout_rate (float): Dropout rate after adding positional encoding.
input_layer (Union[str, torch.nn.Module]): Input layer type.
normalize_before (bool): Whether to use layer_norm before the first block.
concat_after (bool): Whether to concat attention layer's input and output.
If True, additional linear will be applied.
i.e. x -> x + linear(concat(x, att(x)))
If False, no additional linear will be applied. i.e. x -> x + att(x)
positionwise_layer_type (str): "linear", "conv1d", or "conv1d-linear".
positionwise_conv_kernel_size (int): Kernel size of positionwise conv1d layer.
rel_pos_type (str): Whether to use the latest relative positional encoding or
the legacy one. The legacy relative positional encoding will be deprecated
in the future. More Details can be found in
https://github.com/espnet/espnet/pull/2816.
encoder_pos_enc_layer_type (str): Encoder positional encoding layer type.
encoder_attn_layer_type (str): Encoder attention layer type.
activation_type (str): Encoder activation function type.
macaron_style (bool): Whether to use macaron style for positionwise layer.
use_cnn_module (bool): Whether to use convolution module.
zero_triu (bool): Whether to zero the upper triangular part of attention matrix.
cnn_module_kernel (int): Kernerl size of convolution module.
padding_idx (int): Padding idx for input_layer=embed.
"""
def __init__(
self,
input_size: int,
output_size: int = 256,
attention_heads: int = 4,
linear_units: int = 2048,
num_blocks: int = 6,
dropout_rate: float = 0.1,
positional_dropout_rate: float = 0.1,
attention_dropout_rate: float = 0.0,
input_layer: str = "conv2d",
normalize_before: bool = True,
concat_after: bool = False,
positionwise_layer_type: str = "linear",
positionwise_conv_kernel_size: int = 3,
macaron_style: bool = False,
rel_pos_type: str = "legacy",
pos_enc_layer_type: str = "rel_pos",
selfattention_layer_type: str = "rel_selfattn",
activation_type: str = "swish",
use_cnn_module: bool = True,
zero_triu: bool = False,
cnn_module_kernel: int = 31,
padding_idx: int = -1,
interctc_layer_idx: List[int] = [],
interctc_use_conditioning: bool = False,
stochastic_depth_rate: Union[float, List[float]] = 0.0,
):
super().__init__()
self._output_size = output_size
if rel_pos_type == "legacy":
if pos_enc_layer_type == "rel_pos":
pos_enc_layer_type = "legacy_rel_pos"
if selfattention_layer_type == "rel_selfattn":
selfattention_layer_type = "legacy_rel_selfattn"
elif rel_pos_type == "latest":
assert selfattention_layer_type != "legacy_rel_selfattn"
assert pos_enc_layer_type != "legacy_rel_pos"
else:
raise ValueError("unknown rel_pos_type: " + rel_pos_type)
activation = get_activation(activation_type)
if pos_enc_layer_type == "abs_pos":
pos_enc_class = PositionalEncoding
elif pos_enc_layer_type == "scaled_abs_pos":
pos_enc_class = ScaledPositionalEncoding
elif pos_enc_layer_type == "rel_pos":
assert selfattention_layer_type == "rel_selfattn"
pos_enc_class = RelPositionalEncoding
elif pos_enc_layer_type == "legacy_rel_pos":
assert selfattention_layer_type == "legacy_rel_selfattn"
pos_enc_class = LegacyRelPositionalEncoding
logging.warning(
"Using legacy_rel_pos and it will be deprecated in the future."
)
else:
raise ValueError("unknown pos_enc_layer: " + pos_enc_layer_type)
if input_layer == "linear":
self.embed = torch.nn.Sequential(
torch.nn.Linear(input_size, output_size),
torch.nn.LayerNorm(output_size),
torch.nn.Dropout(dropout_rate),
pos_enc_class(output_size, positional_dropout_rate),
)
elif input_layer == "conv2d":
self.embed = Conv2dSubsampling(
input_size,
output_size,
dropout_rate,
pos_enc_class(output_size, positional_dropout_rate),
)
elif input_layer == "conv2dpad":
self.embed = Conv2dSubsamplingPad(
input_size,
output_size,
dropout_rate,
pos_enc_class(output_size, positional_dropout_rate),
)
elif input_layer == "conv2d2":
self.embed = Conv2dSubsampling2(
input_size,
output_size,
dropout_rate,
pos_enc_class(output_size, positional_dropout_rate),
)
elif input_layer == "conv2d6":
self.embed = Conv2dSubsampling6(
input_size,
output_size,
dropout_rate,
pos_enc_class(output_size, positional_dropout_rate),
)
elif input_layer == "conv2d8":
self.embed = Conv2dSubsampling8(
input_size,
output_size,
dropout_rate,
pos_enc_class(output_size, positional_dropout_rate),
)
elif input_layer == "embed":
self.embed = torch.nn.Sequential(
torch.nn.Embedding(input_size, output_size, padding_idx=padding_idx),
pos_enc_class(output_size, positional_dropout_rate),
)
elif isinstance(input_layer, torch.nn.Module):
self.embed = torch.nn.Sequential(
input_layer,
pos_enc_class(output_size, positional_dropout_rate),
)
elif input_layer is None:
self.embed = torch.nn.Sequential(
pos_enc_class(output_size, positional_dropout_rate)
)
else:
raise ValueError("unknown input_layer: " + input_layer)
self.normalize_before = normalize_before
if positionwise_layer_type == "linear":
positionwise_layer = PositionwiseFeedForward
positionwise_layer_args = (
output_size,
linear_units,
dropout_rate,
activation,
)
elif positionwise_layer_type == "conv1d":
positionwise_layer = MultiLayeredConv1d
positionwise_layer_args = (
output_size,
linear_units,
positionwise_conv_kernel_size,
dropout_rate,
)
elif positionwise_layer_type == "conv1d-linear":
positionwise_layer = Conv1dLinear
positionwise_layer_args = (
output_size,
linear_units,
positionwise_conv_kernel_size,
dropout_rate,
)
else:
raise NotImplementedError("Support only linear or conv1d.")
if selfattention_layer_type == "selfattn":
encoder_selfattn_layer = MultiHeadedAttention
encoder_selfattn_layer_args = (
attention_heads,
output_size,
attention_dropout_rate,
)
elif selfattention_layer_type == "legacy_rel_selfattn":
assert pos_enc_layer_type == "legacy_rel_pos"
encoder_selfattn_layer = LegacyRelPositionMultiHeadedAttention
encoder_selfattn_layer_args = (
attention_heads,
output_size,
attention_dropout_rate,
)
logging.warning(
"Using legacy_rel_selfattn and it will be deprecated in the future."
)
elif selfattention_layer_type == "rel_selfattn":
assert pos_enc_layer_type == "rel_pos"
encoder_selfattn_layer = RelPositionMultiHeadedAttention
encoder_selfattn_layer_args = (
attention_heads,
output_size,
attention_dropout_rate,
zero_triu,
)
else:
raise ValueError("unknown encoder_attn_layer: " + selfattention_layer_type)
convolution_layer = ConvolutionModule
convolution_layer_args = (output_size, cnn_module_kernel, activation)
if isinstance(stochastic_depth_rate, float):
stochastic_depth_rate = [stochastic_depth_rate] * num_blocks
if len(stochastic_depth_rate) != num_blocks:
raise ValueError(
f"Length of stochastic_depth_rate ({len(stochastic_depth_rate)}) "
f"should be equal to num_blocks ({num_blocks})"
)
self.encoders = repeat(
num_blocks,
lambda lnum: EncoderLayer(
output_size,
encoder_selfattn_layer(*encoder_selfattn_layer_args),
positionwise_layer(*positionwise_layer_args),
positionwise_layer(*positionwise_layer_args) if macaron_style else None,
convolution_layer(*convolution_layer_args) if use_cnn_module else None,
dropout_rate,
normalize_before,
concat_after,
stochastic_depth_rate[lnum],
),
)
if self.normalize_before:
self.after_norm = LayerNorm(output_size)
self.interctc_layer_idx = interctc_layer_idx
if len(interctc_layer_idx) > 0:
assert 0 < min(interctc_layer_idx) and max(interctc_layer_idx) < num_blocks
self.interctc_use_conditioning = interctc_use_conditioning
self.conditioning_layer = None
def output_size(self) -> int:
return self._output_size
def forward(
self,
xs_pad: torch.Tensor,
ilens: torch.Tensor,
prev_states: torch.Tensor = None,
ctc: CTC = None,
) -> Tuple[torch.Tensor, torch.Tensor, Optional[torch.Tensor]]:
"""Calculate forward propagation.
Args:
xs_pad (torch.Tensor): Input tensor (#batch, L, input_size).
ilens (torch.Tensor): Input length (#batch).
prev_states (torch.Tensor): Not to be used now.
Returns:
torch.Tensor: Output tensor (#batch, L, output_size).
torch.Tensor: Output length (#batch).
torch.Tensor: Not to be used now.
"""
masks = (~make_pad_mask(ilens)[:, None, :]).to(xs_pad.device)
if (
isinstance(self.embed, Conv2dSubsampling)
or isinstance(self.embed, Conv2dSubsampling2)
or isinstance(self.embed, Conv2dSubsampling6)
or isinstance(self.embed, Conv2dSubsampling8)
or isinstance(self.embed, Conv2dSubsamplingPad)
):
short_status, limit_size = check_short_utt(self.embed, xs_pad.size(1))
if short_status:
raise TooShortUttError(
f"has {xs_pad.size(1)} frames and is too short for subsampling "
+ f"(it needs more than {limit_size} frames), return empty results",
xs_pad.size(1),
limit_size,
)
xs_pad, masks = self.embed(xs_pad, masks)
else:
xs_pad = self.embed(xs_pad)
intermediate_outs = []
if len(self.interctc_layer_idx) == 0:
xs_pad, masks = self.encoders(xs_pad, masks)
else:
for layer_idx, encoder_layer in enumerate(self.encoders):
xs_pad, masks = encoder_layer(xs_pad, masks)
if layer_idx + 1 in self.interctc_layer_idx:
encoder_out = xs_pad
if isinstance(encoder_out, tuple):
encoder_out = encoder_out[0]
# intermediate outputs are also normalized
if self.normalize_before:
encoder_out = self.after_norm(encoder_out)
intermediate_outs.append((layer_idx + 1, encoder_out))
if self.interctc_use_conditioning:
ctc_out = ctc.softmax(encoder_out)
if isinstance(xs_pad, tuple):
x, pos_emb = xs_pad
x = x + self.conditioning_layer(ctc_out)
xs_pad = (x, pos_emb)
else:
xs_pad = xs_pad + self.conditioning_layer(ctc_out)
if isinstance(xs_pad, tuple):
xs_pad = xs_pad[0]
if self.normalize_before:
xs_pad = self.after_norm(xs_pad)
olens = masks.squeeze(1).sum(1)
if len(intermediate_outs) > 0:
return (xs_pad, intermediate_outs), olens, None
return xs_pad, olens, None
class CausalConvolution(torch.nn.Module):
"""ConformerConvolution module definition.
Args:
channels: The number of channels.
kernel_size: Size of the convolving kernel.
activation: Type of activation function.
norm_args: Normalization module arguments.
causal: Whether to use causal convolution (set to True if streaming).
"""
def __init__(
self,
channels: int,
kernel_size: int,
activation: torch.nn.Module = torch.nn.ReLU(),
norm_args: Dict = {},
causal: bool = False,
) -> None:
"""Construct an ConformerConvolution object."""
super().__init__()
assert (kernel_size - 1) % 2 == 0
self.kernel_size = kernel_size
self.pointwise_conv1 = torch.nn.Conv1d(
channels,
2 * channels,
kernel_size=1,
stride=1,
padding=0,
)
if causal:
self.lorder = kernel_size - 1
padding = 0
else:
self.lorder = 0
padding = (kernel_size - 1) // 2
self.depthwise_conv = torch.nn.Conv1d(
channels,
channels,
kernel_size,
stride=1,
padding=padding,
groups=channels,
)
self.norm = torch.nn.BatchNorm1d(channels, **norm_args)
self.pointwise_conv2 = torch.nn.Conv1d(
channels,
channels,
kernel_size=1,
stride=1,
padding=0,
)
self.activation = activation
def forward(
self,
x: torch.Tensor,
cache: Optional[torch.Tensor] = None,
right_context: int = 0,
) -> Tuple[torch.Tensor, torch.Tensor]:
"""Compute convolution module.
Args:
x: ConformerConvolution input sequences. (B, T, D_hidden)
cache: ConformerConvolution input cache. (1, conv_kernel, D_hidden)
right_context: Number of frames in right context.
Returns:
x: ConformerConvolution output sequences. (B, T, D_hidden)
cache: ConformerConvolution output cache. (1, conv_kernel, D_hidden)
"""
x = self.pointwise_conv1(x.transpose(1, 2))
x = torch.nn.functional.glu(x, dim=1)
if self.lorder > 0:
if cache is None:
x = torch.nn.functional.pad(x, (self.lorder, 0), "constant", 0.0)
else:
x = torch.cat([cache, x], dim=2)
if right_context > 0:
cache = x[:, :, -(self.lorder + right_context) : -right_context]
else:
cache = x[:, :, -self.lorder :]
x = self.depthwise_conv(x)
x = self.activation(self.norm(x))
x = self.pointwise_conv2(x).transpose(1, 2)
return x, cache
class ChunkEncoderLayer(torch.nn.Module):
"""Chunk Conformer module definition.
Args:
block_size: Input/output size.
self_att: Self-attention module instance.
feed_forward: Feed-forward module instance.
feed_forward_macaron: Feed-forward module instance for macaron network.
conv_mod: Convolution module instance.
norm_class: Normalization module class.
norm_args: Normalization module arguments.
dropout_rate: Dropout rate.
"""
def __init__(
self,
block_size: int,
self_att: torch.nn.Module,
feed_forward: torch.nn.Module,
feed_forward_macaron: torch.nn.Module,
conv_mod: torch.nn.Module,
norm_class: torch.nn.Module = LayerNorm,
norm_args: Dict = {},
dropout_rate: float = 0.0,
) -> None:
"""Construct a Conformer object."""
super().__init__()
self.self_att = self_att
self.feed_forward = feed_forward
self.feed_forward_macaron = feed_forward_macaron
self.feed_forward_scale = 0.5
self.conv_mod = conv_mod
self.norm_feed_forward = norm_class(block_size, **norm_args)
self.norm_self_att = norm_class(block_size, **norm_args)
self.norm_macaron = norm_class(block_size, **norm_args)
self.norm_conv = norm_class(block_size, **norm_args)
self.norm_final = norm_class(block_size, **norm_args)
self.dropout = torch.nn.Dropout(dropout_rate)
self.block_size = block_size
self.cache = None
def reset_streaming_cache(self, left_context: int, device: torch.device) -> None:
"""Initialize/Reset self-attention and convolution modules cache for streaming.
Args:
left_context: Number of left frames during chunk-by-chunk inference.
device: Device to use for cache tensor.
"""
self.cache = [
torch.zeros(
(1, left_context, self.block_size),
device=device,
),
torch.zeros(
(
1,
self.block_size,
self.conv_mod.kernel_size - 1,
),
device=device,
),
]
def forward(
self,
x: torch.Tensor,
pos_enc: torch.Tensor,
mask: torch.Tensor,
chunk_mask: Optional[torch.Tensor] = None,
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
"""Encode input sequences.
Args:
x: Conformer input sequences. (B, T, D_block)
pos_enc: Positional embedding sequences. (B, 2 * (T - 1), D_block)
mask: Source mask. (B, T)
chunk_mask: Chunk mask. (T_2, T_2)
Returns:
x: Conformer output sequences. (B, T, D_block)
mask: Source mask. (B, T)
pos_enc: Positional embedding sequences. (B, 2 * (T - 1), D_block)
"""
residual = x
x = self.norm_macaron(x)
x = residual + self.feed_forward_scale * self.dropout(
self.feed_forward_macaron(x)
)
residual = x
x = self.norm_self_att(x)
x_q = x
x = residual + self.dropout(
self.self_att(
x_q,
x,
x,
pos_enc,
mask,
chunk_mask=chunk_mask,
)
)
residual = x
x = self.norm_conv(x)
x, _ = self.conv_mod(x)
x = residual + self.dropout(x)
residual = x
x = self.norm_feed_forward(x)
x = residual + self.feed_forward_scale * self.dropout(self.feed_forward(x))
x = self.norm_final(x)
return x, mask, pos_enc
def chunk_forward(
self,
x: torch.Tensor,
pos_enc: torch.Tensor,
mask: torch.Tensor,
chunk_size: int = 16,
left_context: int = 0,
right_context: int = 0,
) -> Tuple[torch.Tensor, torch.Tensor]:
"""Encode chunk of input sequence.
Args:
x: Conformer input sequences. (B, T, D_block)
pos_enc: Positional embedding sequences. (B, 2 * (T - 1), D_block)
mask: Source mask. (B, T_2)
left_context: Number of frames in left context.
right_context: Number of frames in right context.
Returns:
x: Conformer output sequences. (B, T, D_block)
pos_enc: Positional embedding sequences. (B, 2 * (T - 1), D_block)
"""
residual = x
x = self.norm_macaron(x)
x = residual + self.feed_forward_scale * self.feed_forward_macaron(x)
residual = x
x = self.norm_self_att(x)
if left_context > 0:
key = torch.cat([self.cache[0], x], dim=1)
else:
key = x
val = key
if right_context > 0:
att_cache = key[:, -(left_context + right_context) : -right_context, :]
else:
att_cache = key[:, -left_context:, :]
x = residual + self.self_att(
x,
key,
val,
pos_enc,
mask,
left_context=left_context,
)
residual = x
x = self.norm_conv(x)
x, conv_cache = self.conv_mod(
x, cache=self.cache[1], right_context=right_context
)
x = residual + x
residual = x
x = self.norm_feed_forward(x)
x = residual + self.feed_forward_scale * self.feed_forward(x)
x = self.norm_final(x)
self.cache = [att_cache, conv_cache]
return x, pos_enc
@tables.register("encoder_classes", "ChunkConformerEncoder")
class ConformerChunkEncoder(torch.nn.Module):
"""Encoder module definition.
Args:
input_size: Input size.
body_conf: Encoder body configuration.
input_conf: Encoder input configuration.
main_conf: Encoder main configuration.
"""
def __init__(
self,
input_size: int,
output_size: int = 256,
attention_heads: int = 4,
linear_units: int = 2048,
num_blocks: int = 6,
dropout_rate: float = 0.1,
positional_dropout_rate: float = 0.1,
attention_dropout_rate: float = 0.0,
embed_vgg_like: bool = False,
normalize_before: bool = True,
concat_after: bool = False,
positionwise_layer_type: str = "linear",
positionwise_conv_kernel_size: int = 3,
macaron_style: bool = False,
rel_pos_type: str = "legacy",
pos_enc_layer_type: str = "rel_pos",
selfattention_layer_type: str = "rel_selfattn",
activation_type: str = "swish",
use_cnn_module: bool = True,
zero_triu: bool = False,
norm_type: str = "layer_norm",
cnn_module_kernel: int = 31,
conv_mod_norm_eps: float = 0.00001,
conv_mod_norm_momentum: float = 0.1,
simplified_att_score: bool = False,
dynamic_chunk_training: bool = False,
short_chunk_threshold: float = 0.75,
short_chunk_size: int = 25,
left_chunk_size: int = 0,
time_reduction_factor: int = 1,
unified_model_training: bool = False,
default_chunk_size: int = 16,
jitter_range: int = 4,
subsampling_factor: int = 1,
) -> None:
"""Construct an Encoder object."""
super().__init__()
self.embed = StreamingConvInput(
input_size=input_size,
conv_size=output_size,
subsampling_factor=subsampling_factor,
vgg_like=embed_vgg_like,
output_size=output_size,
)
self.pos_enc = StreamingRelPositionalEncoding(
output_size,
positional_dropout_rate,
)
activation = get_activation(activation_type)
pos_wise_args = (
output_size,
linear_units,
positional_dropout_rate,
activation,
)
conv_mod_norm_args = {
"eps": conv_mod_norm_eps,
"momentum": conv_mod_norm_momentum,
}
conv_mod_args = (
output_size,
cnn_module_kernel,
activation,
conv_mod_norm_args,
dynamic_chunk_training or unified_model_training,
)
mult_att_args = (
attention_heads,
output_size,
attention_dropout_rate,
simplified_att_score,
)
fn_modules = []
for _ in range(num_blocks):
module = lambda: ChunkEncoderLayer(
output_size,
RelPositionMultiHeadedAttentionChunk(*mult_att_args),
PositionwiseFeedForward(*pos_wise_args),
PositionwiseFeedForward(*pos_wise_args),
CausalConvolution(*conv_mod_args),
dropout_rate=dropout_rate,
)
fn_modules.append(module)
self.encoders = MultiBlocks(
[fn() for fn in fn_modules],
output_size,
)
self._output_size = output_size
self.dynamic_chunk_training = dynamic_chunk_training
self.short_chunk_threshold = short_chunk_threshold
self.short_chunk_size = short_chunk_size
self.left_chunk_size = left_chunk_size
self.unified_model_training = unified_model_training
self.default_chunk_size = default_chunk_size
self.jitter_range = jitter_range
self.time_reduction_factor = time_reduction_factor
def output_size(self) -> int:
return self._output_size
def get_encoder_input_raw_size(self, size: int, hop_length: int) -> int:
"""Return the corresponding number of sample for a given chunk size, in frames.
Where size is the number of features frames after applying subsampling.
Args:
size: Number of frames after subsampling.
hop_length: Frontend's hop length
Returns:
: Number of raw samples
"""
return self.embed.get_size_before_subsampling(size) * hop_length
def get_encoder_input_size(self, size: int) -> int:
"""Return the corresponding number of sample for a given chunk size, in frames.
Where size is the number of features frames after applying subsampling.
Args:
size: Number of frames after subsampling.
Returns:
: Number of raw samples
"""
return self.embed.get_size_before_subsampling(size)
def reset_streaming_cache(self, left_context: int, device: torch.device) -> None:
"""Initialize/Reset encoder streaming cache.
Args:
left_context: Number of frames in left context.
device: Device ID.
"""
return self.encoders.reset_streaming_cache(left_context, device)
def forward(
self,
x: torch.Tensor,
x_len: torch.Tensor,
) -> Tuple[torch.Tensor, torch.Tensor]:
"""Encode input sequences.
Args:
x: Encoder input features. (B, T_in, F)
x_len: Encoder input features lengths. (B,)
Returns:
x: Encoder outputs. (B, T_out, D_enc)
x_len: Encoder outputs lenghts. (B,)
"""
short_status, limit_size = check_short_utt(
self.embed.subsampling_factor, x.size(1)
)
if short_status:
raise TooShortUttError(
f"has {x.size(1)} frames and is too short for subsampling "
+ f"(it needs more than {limit_size} frames), return empty results",
x.size(1),
limit_size,
)
mask = make_source_mask(x_len).to(x.device)
if self.unified_model_training:
if self.training:
chunk_size = (
self.default_chunk_size
+ torch.randint(
-self.jitter_range, self.jitter_range + 1, (1,)
).item()
)
else:
chunk_size = self.default_chunk_size
x, mask = self.embed(x, mask, chunk_size)
pos_enc = self.pos_enc(x)
chunk_mask = make_chunk_mask(
x.size(1),
chunk_size,
left_chunk_size=self.left_chunk_size,
device=x.device,
)
x_utt = self.encoders(
x,
pos_enc,
mask,
chunk_mask=None,
)
x_chunk = self.encoders(
x,
pos_enc,
mask,
chunk_mask=chunk_mask,
)
olens = mask.eq(0).sum(1)
if self.time_reduction_factor > 1:
x_utt = x_utt[:, :: self.time_reduction_factor, :]
x_chunk = x_chunk[:, :: self.time_reduction_factor, :]
olens = torch.floor_divide(olens - 1, self.time_reduction_factor) + 1
return x_utt, x_chunk, olens
elif self.dynamic_chunk_training:
max_len = x.size(1)
if self.training:
chunk_size = torch.randint(1, max_len, (1,)).item()
if chunk_size > (max_len * self.short_chunk_threshold):
chunk_size = max_len
else:
chunk_size = (chunk_size % self.short_chunk_size) + 1
else:
chunk_size = self.default_chunk_size
x, mask = self.embed(x, mask, chunk_size)
pos_enc = self.pos_enc(x)
chunk_mask = make_chunk_mask(
x.size(1),
chunk_size,
left_chunk_size=self.left_chunk_size,
device=x.device,
)
else:
x, mask = self.embed(x, mask, None)
pos_enc = self.pos_enc(x)
chunk_mask = None
x = self.encoders(
x,
pos_enc,
mask,
chunk_mask=chunk_mask,
)
olens = mask.eq(0).sum(1)
if self.time_reduction_factor > 1:
x = x[:, :: self.time_reduction_factor, :]
olens = torch.floor_divide(olens - 1, self.time_reduction_factor) + 1
return x, olens, None
def full_utt_forward(
self,
x: torch.Tensor,
x_len: torch.Tensor,
) -> Tuple[torch.Tensor, torch.Tensor]:
"""Encode input sequences.
Args:
x: Encoder input features. (B, T_in, F)
x_len: Encoder input features lengths. (B,)
Returns:
x: Encoder outputs. (B, T_out, D_enc)
x_len: Encoder outputs lenghts. (B,)
"""
short_status, limit_size = check_short_utt(
self.embed.subsampling_factor, x.size(1)
)
if short_status:
raise TooShortUttError(
f"has {x.size(1)} frames and is too short for subsampling "
+ f"(it needs more than {limit_size} frames), return empty results",
x.size(1),
limit_size,
)
mask = make_source_mask(x_len).to(x.device)
x, mask = self.embed(x, mask, None)
pos_enc = self.pos_enc(x)
x_utt = self.encoders(
x,
pos_enc,
mask,
chunk_mask=None,
)
if self.time_reduction_factor > 1:
x_utt = x_utt[:, :: self.time_reduction_factor, :]
return x_utt
def simu_chunk_forward(
self,
x: torch.Tensor,
x_len: torch.Tensor,
chunk_size: int = 16,
left_context: int = 32,
right_context: int = 0,
) -> torch.Tensor:
short_status, limit_size = check_short_utt(
self.embed.subsampling_factor, x.size(1)
)
if short_status:
raise TooShortUttError(
f"has {x.size(1)} frames and is too short for subsampling "
+ f"(it needs more than {limit_size} frames), return empty results",
x.size(1),
limit_size,
)
mask = make_source_mask(x_len)
x, mask = self.embed(x, mask, chunk_size)
pos_enc = self.pos_enc(x)
chunk_mask = make_chunk_mask(
x.size(1),
chunk_size,
left_chunk_size=self.left_chunk_size,
device=x.device,
)
x = self.encoders(
x,
pos_enc,
mask,
chunk_mask=chunk_mask,
)
olens = mask.eq(0).sum(1)
if self.time_reduction_factor > 1:
x = x[:, :: self.time_reduction_factor, :]
return x
def chunk_forward(
self,
x: torch.Tensor,
x_len: torch.Tensor,
processed_frames: torch.tensor,
chunk_size: int = 16,
left_context: int = 32,
right_context: int = 0,
) -> torch.Tensor:
"""Encode input sequences as chunks.
Args:
x: Encoder input features. (1, T_in, F)
x_len: Encoder input features lengths. (1,)
processed_frames: Number of frames already seen.
left_context: Number of frames in left context.
right_context: Number of frames in right context.
Returns:
x: Encoder outputs. (B, T_out, D_enc)
"""
mask = make_source_mask(x_len)
x, mask = self.embed(x, mask, None)
if left_context > 0:
processed_mask = (
torch.arange(left_context, device=x.device)
.view(1, left_context)
.flip(1)
)
processed_mask = processed_mask >= processed_frames
mask = torch.cat([processed_mask, mask], dim=1)
pos_enc = self.pos_enc(x, left_context=left_context)
x = self.encoders.chunk_forward(
x,
pos_enc,
mask,
chunk_size=chunk_size,
left_context=left_context,
right_context=right_context,
)
if right_context > 0:
x = x[:, 0:-right_context, :]
if self.time_reduction_factor > 1:
x = x[:, :: self.time_reduction_factor, :]
return x