Spaces:
Running
Running
import math | |
import torch | |
import torch.nn.functional as F | |
from torch import nn | |
class MultiHeadSelfAttention(nn.Module): | |
def __init__(self, n_units, h=8, dropout_rate=0.1): | |
super().__init__() | |
self.linearQ = nn.Linear(n_units, n_units) | |
self.linearK = nn.Linear(n_units, n_units) | |
self.linearV = nn.Linear(n_units, n_units) | |
self.linearO = nn.Linear(n_units, n_units) | |
self.d_k = n_units // h | |
self.h = h | |
self.dropout = nn.Dropout(dropout_rate) | |
def __call__(self, x, batch_size, x_mask): | |
q = self.linearQ(x).view(batch_size, -1, self.h, self.d_k) | |
k = self.linearK(x).view(batch_size, -1, self.h, self.d_k) | |
v = self.linearV(x).view(batch_size, -1, self.h, self.d_k) | |
scores = torch.matmul(q.permute(0, 2, 1, 3), k.permute(0, 2, 3, 1)) / math.sqrt( | |
self.d_k | |
) | |
if x_mask is not None: | |
x_mask = x_mask.unsqueeze(1) | |
scores = scores.masked_fill(x_mask == 0, -1e9) | |
self.att = F.softmax(scores, dim=3) | |
p_att = self.dropout(self.att) | |
x = torch.matmul(p_att, v.permute(0, 2, 1, 3)) | |
x = x.permute(0, 2, 1, 3).contiguous().view(-1, self.h * self.d_k) | |
return self.linearO(x) | |
class PositionwiseFeedForward(nn.Module): | |
def __init__(self, n_units, d_units, dropout_rate): | |
super(PositionwiseFeedForward, self).__init__() | |
self.linear1 = nn.Linear(n_units, d_units) | |
self.linear2 = nn.Linear(d_units, n_units) | |
self.dropout = nn.Dropout(dropout_rate) | |
def __call__(self, x): | |
return self.linear2(self.dropout(F.relu(self.linear1(x)))) | |
class PositionalEncoding(torch.nn.Module): | |
def __init__(self, d_model, dropout_rate, max_len=5000, reverse=False): | |
super(PositionalEncoding, self).__init__() | |
self.d_model = d_model | |
self.reverse = reverse | |
self.xscale = math.sqrt(self.d_model) | |
self.dropout = torch.nn.Dropout(p=dropout_rate) | |
self.pe = None | |
self.extend_pe(torch.tensor(0.0).expand(1, max_len)) | |
def extend_pe(self, x): | |
if self.pe is not None: | |
if self.pe.size(1) >= x.size(1): | |
if self.pe.dtype != x.dtype or self.pe.device != x.device: | |
self.pe = self.pe.to(dtype=x.dtype, device=x.device) | |
return | |
pe = torch.zeros(x.size(1), self.d_model) | |
if self.reverse: | |
position = torch.arange( | |
x.size(1) - 1, -1, -1.0, dtype=torch.float32 | |
).unsqueeze(1) | |
else: | |
position = torch.arange(0, x.size(1), dtype=torch.float32).unsqueeze(1) | |
div_term = torch.exp( | |
torch.arange(0, self.d_model, 2, dtype=torch.float32) | |
* -(math.log(10000.0) / self.d_model) | |
) | |
pe[:, 0::2] = torch.sin(position * div_term) | |
pe[:, 1::2] = torch.cos(position * div_term) | |
pe = pe.unsqueeze(0) | |
self.pe = pe.to(device=x.device, dtype=x.dtype) | |
def forward(self, x: torch.Tensor): | |
self.extend_pe(x) | |
x = x * self.xscale + self.pe[:, : x.size(1)] | |
return self.dropout(x) | |
class EENDOLATransformerEncoder(nn.Module): | |
def __init__( | |
self, | |
idim: int, | |
n_layers: int, | |
n_units: int, | |
e_units: int = 2048, | |
h: int = 4, | |
dropout_rate: float = 0.1, | |
use_pos_emb: bool = False, | |
): | |
super(EENDOLATransformerEncoder, self).__init__() | |
self.linear_in = nn.Linear(idim, n_units) | |
self.lnorm_in = nn.LayerNorm(n_units) | |
self.n_layers = n_layers | |
self.dropout = nn.Dropout(dropout_rate) | |
for i in range(n_layers): | |
setattr(self, "{}{:d}".format("lnorm1_", i), nn.LayerNorm(n_units)) | |
setattr( | |
self, | |
"{}{:d}".format("self_att_", i), | |
MultiHeadSelfAttention(n_units, h), | |
) | |
setattr(self, "{}{:d}".format("lnorm2_", i), nn.LayerNorm(n_units)) | |
setattr( | |
self, | |
"{}{:d}".format("ff_", i), | |
PositionwiseFeedForward(n_units, e_units, dropout_rate), | |
) | |
self.lnorm_out = nn.LayerNorm(n_units) | |
def __call__(self, x, x_mask=None): | |
BT_size = x.shape[0] * x.shape[1] | |
e = self.linear_in(x.reshape(BT_size, -1)) | |
for i in range(self.n_layers): | |
e = getattr(self, "{}{:d}".format("lnorm1_", i))(e) | |
s = getattr(self, "{}{:d}".format("self_att_", i))(e, x.shape[0], x_mask) | |
e = e + self.dropout(s) | |
e = getattr(self, "{}{:d}".format("lnorm2_", i))(e) | |
s = getattr(self, "{}{:d}".format("ff_", i))(e) | |
e = e + self.dropout(s) | |
return self.lnorm_out(e) | |