martin
initial
67c46fd
raw
history blame
4.77 kB
import math
import torch
import torch.nn.functional as F
from torch import nn
class MultiHeadSelfAttention(nn.Module):
def __init__(self, n_units, h=8, dropout_rate=0.1):
super().__init__()
self.linearQ = nn.Linear(n_units, n_units)
self.linearK = nn.Linear(n_units, n_units)
self.linearV = nn.Linear(n_units, n_units)
self.linearO = nn.Linear(n_units, n_units)
self.d_k = n_units // h
self.h = h
self.dropout = nn.Dropout(dropout_rate)
def __call__(self, x, batch_size, x_mask):
q = self.linearQ(x).view(batch_size, -1, self.h, self.d_k)
k = self.linearK(x).view(batch_size, -1, self.h, self.d_k)
v = self.linearV(x).view(batch_size, -1, self.h, self.d_k)
scores = torch.matmul(q.permute(0, 2, 1, 3), k.permute(0, 2, 3, 1)) / math.sqrt(
self.d_k
)
if x_mask is not None:
x_mask = x_mask.unsqueeze(1)
scores = scores.masked_fill(x_mask == 0, -1e9)
self.att = F.softmax(scores, dim=3)
p_att = self.dropout(self.att)
x = torch.matmul(p_att, v.permute(0, 2, 1, 3))
x = x.permute(0, 2, 1, 3).contiguous().view(-1, self.h * self.d_k)
return self.linearO(x)
class PositionwiseFeedForward(nn.Module):
def __init__(self, n_units, d_units, dropout_rate):
super(PositionwiseFeedForward, self).__init__()
self.linear1 = nn.Linear(n_units, d_units)
self.linear2 = nn.Linear(d_units, n_units)
self.dropout = nn.Dropout(dropout_rate)
def __call__(self, x):
return self.linear2(self.dropout(F.relu(self.linear1(x))))
class PositionalEncoding(torch.nn.Module):
def __init__(self, d_model, dropout_rate, max_len=5000, reverse=False):
super(PositionalEncoding, self).__init__()
self.d_model = d_model
self.reverse = reverse
self.xscale = math.sqrt(self.d_model)
self.dropout = torch.nn.Dropout(p=dropout_rate)
self.pe = None
self.extend_pe(torch.tensor(0.0).expand(1, max_len))
def extend_pe(self, x):
if self.pe is not None:
if self.pe.size(1) >= x.size(1):
if self.pe.dtype != x.dtype or self.pe.device != x.device:
self.pe = self.pe.to(dtype=x.dtype, device=x.device)
return
pe = torch.zeros(x.size(1), self.d_model)
if self.reverse:
position = torch.arange(
x.size(1) - 1, -1, -1.0, dtype=torch.float32
).unsqueeze(1)
else:
position = torch.arange(0, x.size(1), dtype=torch.float32).unsqueeze(1)
div_term = torch.exp(
torch.arange(0, self.d_model, 2, dtype=torch.float32)
* -(math.log(10000.0) / self.d_model)
)
pe[:, 0::2] = torch.sin(position * div_term)
pe[:, 1::2] = torch.cos(position * div_term)
pe = pe.unsqueeze(0)
self.pe = pe.to(device=x.device, dtype=x.dtype)
def forward(self, x: torch.Tensor):
self.extend_pe(x)
x = x * self.xscale + self.pe[:, : x.size(1)]
return self.dropout(x)
class EENDOLATransformerEncoder(nn.Module):
def __init__(
self,
idim: int,
n_layers: int,
n_units: int,
e_units: int = 2048,
h: int = 4,
dropout_rate: float = 0.1,
use_pos_emb: bool = False,
):
super(EENDOLATransformerEncoder, self).__init__()
self.linear_in = nn.Linear(idim, n_units)
self.lnorm_in = nn.LayerNorm(n_units)
self.n_layers = n_layers
self.dropout = nn.Dropout(dropout_rate)
for i in range(n_layers):
setattr(self, "{}{:d}".format("lnorm1_", i), nn.LayerNorm(n_units))
setattr(
self,
"{}{:d}".format("self_att_", i),
MultiHeadSelfAttention(n_units, h),
)
setattr(self, "{}{:d}".format("lnorm2_", i), nn.LayerNorm(n_units))
setattr(
self,
"{}{:d}".format("ff_", i),
PositionwiseFeedForward(n_units, e_units, dropout_rate),
)
self.lnorm_out = nn.LayerNorm(n_units)
def __call__(self, x, x_mask=None):
BT_size = x.shape[0] * x.shape[1]
e = self.linear_in(x.reshape(BT_size, -1))
for i in range(self.n_layers):
e = getattr(self, "{}{:d}".format("lnorm1_", i))(e)
s = getattr(self, "{}{:d}".format("self_att_", i))(e, x.shape[0], x_mask)
e = e + self.dropout(s)
e = getattr(self, "{}{:d}".format("lnorm2_", i))(e)
s = getattr(self, "{}{:d}".format("ff_", i))(e)
e = e + self.dropout(s)
return self.lnorm_out(e)