Spaces:
Running
Running
import logging | |
import numpy as np | |
import six | |
import torch | |
import torch.nn.functional as F | |
from torch.nn.utils.rnn import pack_padded_sequence | |
from torch.nn.utils.rnn import pad_packed_sequence | |
from funasr_detach.metrics.common import get_vgg2l_odim | |
from funasr_detach.models.transformer.utils.nets_utils import make_pad_mask | |
from funasr_detach.models.transformer.utils.nets_utils import to_device | |
class RNNP(torch.nn.Module): | |
"""RNN with projection layer module | |
:param int idim: dimension of inputs | |
:param int elayers: number of encoder layers | |
:param int cdim: number of rnn units (resulted in cdim * 2 if bidirectional) | |
:param int hdim: number of projection units | |
:param np.ndarray subsample: list of subsampling numbers | |
:param float dropout: dropout rate | |
:param str typ: The RNN type | |
""" | |
def __init__(self, idim, elayers, cdim, hdim, subsample, dropout, typ="blstm"): | |
super(RNNP, self).__init__() | |
bidir = typ[0] == "b" | |
for i in six.moves.range(elayers): | |
if i == 0: | |
inputdim = idim | |
else: | |
inputdim = hdim | |
RNN = torch.nn.LSTM if "lstm" in typ else torch.nn.GRU | |
rnn = RNN( | |
inputdim, cdim, num_layers=1, bidirectional=bidir, batch_first=True | |
) | |
setattr(self, "%s%d" % ("birnn" if bidir else "rnn", i), rnn) | |
# bottleneck layer to merge | |
if bidir: | |
setattr(self, "bt%d" % i, torch.nn.Linear(2 * cdim, hdim)) | |
else: | |
setattr(self, "bt%d" % i, torch.nn.Linear(cdim, hdim)) | |
self.elayers = elayers | |
self.cdim = cdim | |
self.subsample = subsample | |
self.typ = typ | |
self.bidir = bidir | |
self.dropout = dropout | |
def forward(self, xs_pad, ilens, prev_state=None): | |
"""RNNP forward | |
:param torch.Tensor xs_pad: batch of padded input sequences (B, Tmax, idim) | |
:param torch.Tensor ilens: batch of lengths of input sequences (B) | |
:param torch.Tensor prev_state: batch of previous RNN states | |
:return: batch of hidden state sequences (B, Tmax, hdim) | |
:rtype: torch.Tensor | |
""" | |
logging.debug(self.__class__.__name__ + " input lengths: " + str(ilens)) | |
elayer_states = [] | |
for layer in six.moves.range(self.elayers): | |
if not isinstance(ilens, torch.Tensor): | |
ilens = torch.tensor(ilens) | |
xs_pack = pack_padded_sequence(xs_pad, ilens.cpu(), batch_first=True) | |
rnn = getattr(self, ("birnn" if self.bidir else "rnn") + str(layer)) | |
rnn.flatten_parameters() | |
if prev_state is not None and rnn.bidirectional: | |
prev_state = reset_backward_rnn_state(prev_state) | |
ys, states = rnn( | |
xs_pack, hx=None if prev_state is None else prev_state[layer] | |
) | |
elayer_states.append(states) | |
# ys: utt list of frame x cdim x 2 (2: means bidirectional) | |
ys_pad, ilens = pad_packed_sequence(ys, batch_first=True) | |
sub = self.subsample[layer + 1] | |
if sub > 1: | |
ys_pad = ys_pad[:, ::sub] | |
ilens = torch.tensor([int(i + 1) // sub for i in ilens]) | |
# (sum _utt frame_utt) x dim | |
projection_layer = getattr(self, "bt%d" % layer) | |
projected = projection_layer(ys_pad.contiguous().view(-1, ys_pad.size(2))) | |
xs_pad = projected.view(ys_pad.size(0), ys_pad.size(1), -1) | |
if layer < self.elayers - 1: | |
xs_pad = torch.tanh(F.dropout(xs_pad, p=self.dropout)) | |
return xs_pad, ilens, elayer_states # x: utt list of frame x dim | |
class RNN(torch.nn.Module): | |
"""RNN module | |
:param int idim: dimension of inputs | |
:param int elayers: number of encoder layers | |
:param int cdim: number of rnn units (resulted in cdim * 2 if bidirectional) | |
:param int hdim: number of final projection units | |
:param float dropout: dropout rate | |
:param str typ: The RNN type | |
""" | |
def __init__(self, idim, elayers, cdim, hdim, dropout, typ="blstm"): | |
super(RNN, self).__init__() | |
bidir = typ[0] == "b" | |
self.nbrnn = ( | |
torch.nn.LSTM( | |
idim, | |
cdim, | |
elayers, | |
batch_first=True, | |
dropout=dropout, | |
bidirectional=bidir, | |
) | |
if "lstm" in typ | |
else torch.nn.GRU( | |
idim, | |
cdim, | |
elayers, | |
batch_first=True, | |
dropout=dropout, | |
bidirectional=bidir, | |
) | |
) | |
if bidir: | |
self.l_last = torch.nn.Linear(cdim * 2, hdim) | |
else: | |
self.l_last = torch.nn.Linear(cdim, hdim) | |
self.typ = typ | |
def forward(self, xs_pad, ilens, prev_state=None): | |
"""RNN forward | |
:param torch.Tensor xs_pad: batch of padded input sequences (B, Tmax, D) | |
:param torch.Tensor ilens: batch of lengths of input sequences (B) | |
:param torch.Tensor prev_state: batch of previous RNN states | |
:return: batch of hidden state sequences (B, Tmax, eprojs) | |
:rtype: torch.Tensor | |
""" | |
logging.debug(self.__class__.__name__ + " input lengths: " + str(ilens)) | |
if not isinstance(ilens, torch.Tensor): | |
ilens = torch.tensor(ilens) | |
xs_pack = pack_padded_sequence(xs_pad, ilens.cpu(), batch_first=True) | |
self.nbrnn.flatten_parameters() | |
if prev_state is not None and self.nbrnn.bidirectional: | |
# We assume that when previous state is passed, | |
# it means that we're streaming the input | |
# and therefore cannot propagate backward BRNN state | |
# (otherwise it goes in the wrong direction) | |
prev_state = reset_backward_rnn_state(prev_state) | |
ys, states = self.nbrnn(xs_pack, hx=prev_state) | |
# ys: utt list of frame x cdim x 2 (2: means bidirectional) | |
ys_pad, ilens = pad_packed_sequence(ys, batch_first=True) | |
# (sum _utt frame_utt) x dim | |
projected = torch.tanh( | |
self.l_last(ys_pad.contiguous().view(-1, ys_pad.size(2))) | |
) | |
xs_pad = projected.view(ys_pad.size(0), ys_pad.size(1), -1) | |
return xs_pad, ilens, states # x: utt list of frame x dim | |
def reset_backward_rnn_state(states): | |
"""Sets backward BRNN states to zeroes | |
Useful in processing of sliding windows over the inputs | |
""" | |
if isinstance(states, (list, tuple)): | |
for state in states: | |
state[1::2] = 0.0 | |
else: | |
states[1::2] = 0.0 | |
return states | |
class VGG2L(torch.nn.Module): | |
"""VGG-like module | |
:param int in_channel: number of input channels | |
""" | |
def __init__(self, in_channel=1): | |
super(VGG2L, self).__init__() | |
# CNN layer (VGG motivated) | |
self.conv1_1 = torch.nn.Conv2d(in_channel, 64, 3, stride=1, padding=1) | |
self.conv1_2 = torch.nn.Conv2d(64, 64, 3, stride=1, padding=1) | |
self.conv2_1 = torch.nn.Conv2d(64, 128, 3, stride=1, padding=1) | |
self.conv2_2 = torch.nn.Conv2d(128, 128, 3, stride=1, padding=1) | |
self.in_channel = in_channel | |
def forward(self, xs_pad, ilens, **kwargs): | |
"""VGG2L forward | |
:param torch.Tensor xs_pad: batch of padded input sequences (B, Tmax, D) | |
:param torch.Tensor ilens: batch of lengths of input sequences (B) | |
:return: batch of padded hidden state sequences (B, Tmax // 4, 128 * D // 4) | |
:rtype: torch.Tensor | |
""" | |
logging.debug(self.__class__.__name__ + " input lengths: " + str(ilens)) | |
# x: utt x frame x dim | |
# xs_pad = F.pad_sequence(xs_pad) | |
# x: utt x 1 (input channel num) x frame x dim | |
xs_pad = xs_pad.view( | |
xs_pad.size(0), | |
xs_pad.size(1), | |
self.in_channel, | |
xs_pad.size(2) // self.in_channel, | |
).transpose(1, 2) | |
# NOTE: max_pool1d ? | |
xs_pad = F.relu(self.conv1_1(xs_pad)) | |
xs_pad = F.relu(self.conv1_2(xs_pad)) | |
xs_pad = F.max_pool2d(xs_pad, 2, stride=2, ceil_mode=True) | |
xs_pad = F.relu(self.conv2_1(xs_pad)) | |
xs_pad = F.relu(self.conv2_2(xs_pad)) | |
xs_pad = F.max_pool2d(xs_pad, 2, stride=2, ceil_mode=True) | |
if torch.is_tensor(ilens): | |
ilens = ilens.cpu().numpy() | |
else: | |
ilens = np.array(ilens, dtype=np.float32) | |
ilens = np.array(np.ceil(ilens / 2), dtype=np.int64) | |
ilens = np.array( | |
np.ceil(np.array(ilens, dtype=np.float32) / 2), dtype=np.int64 | |
).tolist() | |
# x: utt_list of frame (remove zeropaded frames) x (input channel num x dim) | |
xs_pad = xs_pad.transpose(1, 2) | |
xs_pad = xs_pad.contiguous().view( | |
xs_pad.size(0), xs_pad.size(1), xs_pad.size(2) * xs_pad.size(3) | |
) | |
return xs_pad, ilens, None # no state in this layer | |
class Encoder(torch.nn.Module): | |
"""Encoder module | |
:param str etype: type of encoder network | |
:param int idim: number of dimensions of encoder network | |
:param int elayers: number of layers of encoder network | |
:param int eunits: number of lstm units of encoder network | |
:param int eprojs: number of projection units of encoder network | |
:param np.ndarray subsample: list of subsampling numbers | |
:param float dropout: dropout rate | |
:param int in_channel: number of input channels | |
""" | |
def __init__( | |
self, etype, idim, elayers, eunits, eprojs, subsample, dropout, in_channel=1 | |
): | |
super(Encoder, self).__init__() | |
typ = etype.lstrip("vgg").rstrip("p") | |
if typ not in ["lstm", "gru", "blstm", "bgru"]: | |
logging.error("Error: need to specify an appropriate encoder architecture") | |
if etype.startswith("vgg"): | |
if etype[-1] == "p": | |
self.enc = torch.nn.ModuleList( | |
[ | |
VGG2L(in_channel), | |
RNNP( | |
get_vgg2l_odim(idim, in_channel=in_channel), | |
elayers, | |
eunits, | |
eprojs, | |
subsample, | |
dropout, | |
typ=typ, | |
), | |
] | |
) | |
logging.info("Use CNN-VGG + " + typ.upper() + "P for encoder") | |
else: | |
self.enc = torch.nn.ModuleList( | |
[ | |
VGG2L(in_channel), | |
RNN( | |
get_vgg2l_odim(idim, in_channel=in_channel), | |
elayers, | |
eunits, | |
eprojs, | |
dropout, | |
typ=typ, | |
), | |
] | |
) | |
logging.info("Use CNN-VGG + " + typ.upper() + " for encoder") | |
self.conv_subsampling_factor = 4 | |
else: | |
if etype[-1] == "p": | |
self.enc = torch.nn.ModuleList( | |
[RNNP(idim, elayers, eunits, eprojs, subsample, dropout, typ=typ)] | |
) | |
logging.info(typ.upper() + " with every-layer projection for encoder") | |
else: | |
self.enc = torch.nn.ModuleList( | |
[RNN(idim, elayers, eunits, eprojs, dropout, typ=typ)] | |
) | |
logging.info(typ.upper() + " without projection for encoder") | |
self.conv_subsampling_factor = 1 | |
def forward(self, xs_pad, ilens, prev_states=None): | |
"""Encoder forward | |
:param torch.Tensor xs_pad: batch of padded input sequences (B, Tmax, D) | |
:param torch.Tensor ilens: batch of lengths of input sequences (B) | |
:param torch.Tensor prev_state: batch of previous encoder hidden states (?, ...) | |
:return: batch of hidden state sequences (B, Tmax, eprojs) | |
:rtype: torch.Tensor | |
""" | |
if prev_states is None: | |
prev_states = [None] * len(self.enc) | |
assert len(prev_states) == len(self.enc) | |
current_states = [] | |
for module, prev_state in zip(self.enc, prev_states): | |
xs_pad, ilens, states = module(xs_pad, ilens, prev_state=prev_state) | |
current_states.append(states) | |
# make mask to remove bias value in padded part | |
mask = to_device(xs_pad, make_pad_mask(ilens).unsqueeze(-1)) | |
return xs_pad.masked_fill(mask, 0.0), ilens, current_states | |
def encoder_for(args, idim, subsample): | |
"""Instantiates an encoder module given the program arguments | |
:param Namespace args: The arguments | |
:param int or List of integer idim: dimension of input, e.g. 83, or | |
List of dimensions of inputs, e.g. [83,83] | |
:param List or List of List subsample: subsample factors, e.g. [1,2,2,1,1], or | |
List of subsample factors of each encoder. | |
e.g. [[1,2,2,1,1], [1,2,2,1,1]] | |
:rtype torch.nn.Module | |
:return: The encoder module | |
""" | |
num_encs = getattr(args, "num_encs", 1) # use getattr to keep compatibility | |
if num_encs == 1: | |
# compatible with single encoder asr mode | |
return Encoder( | |
args.etype, | |
idim, | |
args.elayers, | |
args.eunits, | |
args.eprojs, | |
subsample, | |
args.dropout_rate, | |
) | |
elif num_encs >= 1: | |
enc_list = torch.nn.ModuleList() | |
for idx in range(num_encs): | |
enc = Encoder( | |
args.etype[idx], | |
idim[idx], | |
args.elayers[idx], | |
args.eunits[idx], | |
args.eprojs, | |
subsample[idx], | |
args.dropout_rate[idx], | |
) | |
enc_list.append(enc) | |
return enc_list | |
else: | |
raise ValueError( | |
"Number of encoders needs to be more than one. {}".format(num_encs) | |
) | |