Spaces:
Running
Running
from typing import Any | |
from typing import List | |
from typing import Tuple | |
import torch | |
import torch.nn as nn | |
from funasr_detach.models.transformer.embedding import PositionalEncoding | |
from funasr_detach.models.encoder.transformer_encoder import ( | |
TransformerEncoder_s0 as Encoder, | |
) | |
from funasr_detach.models.transformer.utils.mask import subsequent_mask | |
from funasr_detach.train.abs_model import AbsLM | |
class TransformerLM(AbsLM): | |
def __init__( | |
self, | |
vocab_size: int, | |
pos_enc: str = None, | |
embed_unit: int = 128, | |
att_unit: int = 256, | |
head: int = 2, | |
unit: int = 1024, | |
layer: int = 4, | |
dropout_rate: float = 0.5, | |
): | |
super().__init__() | |
if pos_enc == "sinusoidal": | |
pos_enc_class = PositionalEncoding | |
elif pos_enc is None: | |
def pos_enc_class(*args, **kwargs): | |
return nn.Sequential() # indentity | |
else: | |
raise ValueError(f"unknown pos-enc option: {pos_enc}") | |
self.embed = nn.Embedding(vocab_size, embed_unit) | |
self.encoder = Encoder( | |
idim=embed_unit, | |
attention_dim=att_unit, | |
attention_heads=head, | |
linear_units=unit, | |
num_blocks=layer, | |
dropout_rate=dropout_rate, | |
input_layer="linear", | |
pos_enc_class=pos_enc_class, | |
) | |
self.decoder = nn.Linear(att_unit, vocab_size) | |
def _target_mask(self, ys_in_pad): | |
ys_mask = ys_in_pad != 0 | |
m = subsequent_mask(ys_mask.size(-1), device=ys_mask.device).unsqueeze(0) | |
return ys_mask.unsqueeze(-2) & m | |
def forward(self, input: torch.Tensor, hidden: None) -> Tuple[torch.Tensor, None]: | |
"""Compute LM loss value from buffer sequences. | |
Args: | |
input (torch.Tensor): Input ids. (batch, len) | |
hidden (torch.Tensor): Target ids. (batch, len) | |
""" | |
x = self.embed(input) | |
mask = self._target_mask(input) | |
h, _ = self.encoder(x, mask) | |
y = self.decoder(h) | |
return y, None | |
def score( | |
self, y: torch.Tensor, state: Any, x: torch.Tensor | |
) -> Tuple[torch.Tensor, Any]: | |
"""Score new token. | |
Args: | |
y (torch.Tensor): 1D torch.int64 prefix tokens. | |
state: Scorer state for prefix tokens | |
x (torch.Tensor): encoder feature that generates ys. | |
Returns: | |
tuple[torch.Tensor, Any]: Tuple of | |
torch.float32 scores for next token (vocab_size) | |
and next state for ys | |
""" | |
y = y.unsqueeze(0) | |
h, _, cache = self.encoder.forward_one_step( | |
self.embed(y), self._target_mask(y), cache=state | |
) | |
h = self.decoder(h[:, -1]) | |
logp = h.log_softmax(dim=-1).squeeze(0) | |
return logp, cache | |
def batch_score( | |
self, ys: torch.Tensor, states: List[Any], xs: torch.Tensor | |
) -> Tuple[torch.Tensor, List[Any]]: | |
"""Score new token batch. | |
Args: | |
ys (torch.Tensor): torch.int64 prefix tokens (n_batch, ylen). | |
states (List[Any]): Scorer states for prefix tokens. | |
xs (torch.Tensor): | |
The encoder feature that generates ys (n_batch, xlen, n_feat). | |
Returns: | |
tuple[torch.Tensor, List[Any]]: Tuple of | |
batchfied scores for next token with shape of `(n_batch, vocab_size)` | |
and next state list for ys. | |
""" | |
# merge states | |
n_batch = len(ys) | |
n_layers = len(self.encoder.encoders) | |
if states[0] is None: | |
batch_state = None | |
else: | |
# transpose state of [batch, layer] into [layer, batch] | |
batch_state = [ | |
torch.stack([states[b][i] for b in range(n_batch)]) | |
for i in range(n_layers) | |
] | |
# batch decoding | |
h, _, states = self.encoder.forward_one_step( | |
self.embed(ys), self._target_mask(ys), cache=batch_state | |
) | |
h = self.decoder(h[:, -1]) | |
logp = h.log_softmax(dim=-1) | |
# transpose state of [layer, batch] into [batch, layer] | |
state_list = [[states[i][b] for i in range(n_layers)] for b in range(n_batch)] | |
return logp, state_list | |