Spaces:
Running
Running
import math | |
import torch | |
import numpy as np | |
import torch.nn.functional as F | |
from funasr_detach.models.scama.utils import sequence_mask | |
from funasr_detach.models.transformer.utils.nets_utils import make_pad_mask | |
class overlap_chunk: | |
""" | |
Author: Speech Lab of DAMO Academy, Alibaba Group | |
San-m: Memory equipped self-attention for end-to-end speech recognition | |
https://arxiv.org/abs/2006.01713 | |
""" | |
def __init__( | |
self, | |
chunk_size: tuple = (16,), | |
stride: tuple = (10,), | |
pad_left: tuple = (0,), | |
encoder_att_look_back_factor: tuple = (1,), | |
shfit_fsmn: int = 0, | |
decoder_att_look_back_factor: tuple = (1,), | |
): | |
pad_left = self.check_chunk_size_args(chunk_size, pad_left) | |
encoder_att_look_back_factor = self.check_chunk_size_args( | |
chunk_size, encoder_att_look_back_factor | |
) | |
decoder_att_look_back_factor = self.check_chunk_size_args( | |
chunk_size, decoder_att_look_back_factor | |
) | |
( | |
self.chunk_size, | |
self.stride, | |
self.pad_left, | |
self.encoder_att_look_back_factor, | |
self.decoder_att_look_back_factor, | |
) = ( | |
chunk_size, | |
stride, | |
pad_left, | |
encoder_att_look_back_factor, | |
decoder_att_look_back_factor, | |
) | |
self.shfit_fsmn = shfit_fsmn | |
self.x_add_mask = None | |
self.x_rm_mask = None | |
self.x_len = None | |
self.mask_shfit_chunk = None | |
self.mask_chunk_predictor = None | |
self.mask_att_chunk_encoder = None | |
self.mask_shift_att_chunk_decoder = None | |
self.chunk_outs = None | |
( | |
self.chunk_size_cur, | |
self.stride_cur, | |
self.pad_left_cur, | |
self.encoder_att_look_back_factor_cur, | |
self.chunk_size_pad_shift_cur, | |
) = (None, None, None, None, None) | |
def check_chunk_size_args(self, chunk_size, x): | |
if len(x) < len(chunk_size): | |
x = [x[0] for i in chunk_size] | |
return x | |
def get_chunk_size(self, ind: int = 0): | |
# with torch.no_grad: | |
( | |
chunk_size, | |
stride, | |
pad_left, | |
encoder_att_look_back_factor, | |
decoder_att_look_back_factor, | |
) = ( | |
self.chunk_size[ind], | |
self.stride[ind], | |
self.pad_left[ind], | |
self.encoder_att_look_back_factor[ind], | |
self.decoder_att_look_back_factor[ind], | |
) | |
( | |
self.chunk_size_cur, | |
self.stride_cur, | |
self.pad_left_cur, | |
self.encoder_att_look_back_factor_cur, | |
self.chunk_size_pad_shift_cur, | |
self.decoder_att_look_back_factor_cur, | |
) = ( | |
chunk_size, | |
stride, | |
pad_left, | |
encoder_att_look_back_factor, | |
chunk_size + self.shfit_fsmn, | |
decoder_att_look_back_factor, | |
) | |
return ( | |
self.chunk_size_cur, | |
self.stride_cur, | |
self.pad_left_cur, | |
self.encoder_att_look_back_factor_cur, | |
self.chunk_size_pad_shift_cur, | |
) | |
def random_choice(self, training=True, decoding_ind=None): | |
chunk_num = len(self.chunk_size) | |
ind = 0 | |
if training and chunk_num > 1: | |
ind = torch.randint(0, chunk_num, ()).cpu().item() | |
if not training and decoding_ind is not None: | |
ind = int(decoding_ind) | |
return ind | |
def gen_chunk_mask(self, x_len, ind=0, num_units=1, num_units_predictor=1): | |
with torch.no_grad(): | |
x_len = x_len.cpu().numpy() | |
x_len_max = x_len.max() | |
( | |
chunk_size, | |
stride, | |
pad_left, | |
encoder_att_look_back_factor, | |
chunk_size_pad_shift, | |
) = self.get_chunk_size(ind) | |
shfit_fsmn = self.shfit_fsmn | |
pad_right = chunk_size - stride - pad_left | |
chunk_num_batch = np.ceil(x_len / stride).astype(np.int32) | |
x_len_chunk = ( | |
(chunk_num_batch - 1) * chunk_size_pad_shift | |
+ shfit_fsmn | |
+ pad_left | |
+ 0 | |
+ x_len | |
- (chunk_num_batch - 1) * stride | |
) | |
x_len_chunk = x_len_chunk.astype(x_len.dtype) | |
x_len_chunk_max = x_len_chunk.max() | |
chunk_num = int(math.ceil(x_len_max / stride)) | |
dtype = np.int32 | |
max_len_for_x_mask_tmp = max(chunk_size, x_len_max + pad_left) | |
x_add_mask = np.zeros([0, max_len_for_x_mask_tmp], dtype=dtype) | |
x_rm_mask = np.zeros([max_len_for_x_mask_tmp, 0], dtype=dtype) | |
mask_shfit_chunk = np.zeros([0, num_units], dtype=dtype) | |
mask_chunk_predictor = np.zeros([0, num_units_predictor], dtype=dtype) | |
mask_shift_att_chunk_decoder = np.zeros([0, 1], dtype=dtype) | |
mask_att_chunk_encoder = np.zeros( | |
[0, chunk_num * chunk_size_pad_shift], dtype=dtype | |
) | |
for chunk_ids in range(chunk_num): | |
# x_mask add | |
fsmn_padding = np.zeros( | |
(shfit_fsmn, max_len_for_x_mask_tmp), dtype=dtype | |
) | |
x_mask_cur = np.diag(np.ones(chunk_size, dtype=np.float32)) | |
x_mask_pad_left = np.zeros( | |
(chunk_size, chunk_ids * stride), dtype=dtype | |
) | |
x_mask_pad_right = np.zeros( | |
(chunk_size, max_len_for_x_mask_tmp), dtype=dtype | |
) | |
x_cur_pad = np.concatenate( | |
[x_mask_pad_left, x_mask_cur, x_mask_pad_right], axis=1 | |
) | |
x_cur_pad = x_cur_pad[:chunk_size, :max_len_for_x_mask_tmp] | |
x_add_mask_fsmn = np.concatenate([fsmn_padding, x_cur_pad], axis=0) | |
x_add_mask = np.concatenate([x_add_mask, x_add_mask_fsmn], axis=0) | |
# x_mask rm | |
fsmn_padding = np.zeros( | |
(max_len_for_x_mask_tmp, shfit_fsmn), dtype=dtype | |
) | |
padding_mask_left = np.zeros( | |
(max_len_for_x_mask_tmp, pad_left), dtype=dtype | |
) | |
padding_mask_right = np.zeros( | |
(max_len_for_x_mask_tmp, pad_right), dtype=dtype | |
) | |
x_mask_cur = np.diag(np.ones(stride, dtype=dtype)) | |
x_mask_cur_pad_top = np.zeros((chunk_ids * stride, stride), dtype=dtype) | |
x_mask_cur_pad_bottom = np.zeros( | |
(max_len_for_x_mask_tmp, stride), dtype=dtype | |
) | |
x_rm_mask_cur = np.concatenate( | |
[x_mask_cur_pad_top, x_mask_cur, x_mask_cur_pad_bottom], axis=0 | |
) | |
x_rm_mask_cur = x_rm_mask_cur[:max_len_for_x_mask_tmp, :stride] | |
x_rm_mask_cur_fsmn = np.concatenate( | |
[ | |
fsmn_padding, | |
padding_mask_left, | |
x_rm_mask_cur, | |
padding_mask_right, | |
], | |
axis=1, | |
) | |
x_rm_mask = np.concatenate([x_rm_mask, x_rm_mask_cur_fsmn], axis=1) | |
# fsmn_padding_mask | |
pad_shfit_mask = np.zeros([shfit_fsmn, num_units], dtype=dtype) | |
ones_1 = np.ones([chunk_size, num_units], dtype=dtype) | |
mask_shfit_chunk_cur = np.concatenate([pad_shfit_mask, ones_1], axis=0) | |
mask_shfit_chunk = np.concatenate( | |
[mask_shfit_chunk, mask_shfit_chunk_cur], axis=0 | |
) | |
# predictor mask | |
zeros_1 = np.zeros( | |
[shfit_fsmn + pad_left, num_units_predictor], dtype=dtype | |
) | |
ones_2 = np.ones([stride, num_units_predictor], dtype=dtype) | |
zeros_3 = np.zeros( | |
[chunk_size - stride - pad_left, num_units_predictor], dtype=dtype | |
) | |
ones_zeros = np.concatenate([ones_2, zeros_3], axis=0) | |
mask_chunk_predictor_cur = np.concatenate([zeros_1, ones_zeros], axis=0) | |
mask_chunk_predictor = np.concatenate( | |
[mask_chunk_predictor, mask_chunk_predictor_cur], axis=0 | |
) | |
# encoder att mask | |
zeros_1_top = np.zeros( | |
[shfit_fsmn, chunk_num * chunk_size_pad_shift], dtype=dtype | |
) | |
zeros_2_num = max(chunk_ids - encoder_att_look_back_factor, 0) | |
zeros_2 = np.zeros( | |
[chunk_size, zeros_2_num * chunk_size_pad_shift], dtype=dtype | |
) | |
encoder_att_look_back_num = max(chunk_ids - zeros_2_num, 0) | |
zeros_2_left = np.zeros([chunk_size, shfit_fsmn], dtype=dtype) | |
ones_2_mid = np.ones([stride, stride], dtype=dtype) | |
zeros_2_bottom = np.zeros([chunk_size - stride, stride], dtype=dtype) | |
zeros_2_right = np.zeros([chunk_size, chunk_size - stride], dtype=dtype) | |
ones_2 = np.concatenate([ones_2_mid, zeros_2_bottom], axis=0) | |
ones_2 = np.concatenate([zeros_2_left, ones_2, zeros_2_right], axis=1) | |
ones_2 = np.tile(ones_2, [1, encoder_att_look_back_num]) | |
zeros_3_left = np.zeros([chunk_size, shfit_fsmn], dtype=dtype) | |
ones_3_right = np.ones([chunk_size, chunk_size], dtype=dtype) | |
ones_3 = np.concatenate([zeros_3_left, ones_3_right], axis=1) | |
zeros_remain_num = max(chunk_num - 1 - chunk_ids, 0) | |
zeros_remain = np.zeros( | |
[chunk_size, zeros_remain_num * chunk_size_pad_shift], dtype=dtype | |
) | |
ones2_bottom = np.concatenate( | |
[zeros_2, ones_2, ones_3, zeros_remain], axis=1 | |
) | |
mask_att_chunk_encoder_cur = np.concatenate( | |
[zeros_1_top, ones2_bottom], axis=0 | |
) | |
mask_att_chunk_encoder = np.concatenate( | |
[mask_att_chunk_encoder, mask_att_chunk_encoder_cur], axis=0 | |
) | |
# decoder fsmn_shift_att_mask | |
zeros_1 = np.zeros([shfit_fsmn, 1]) | |
ones_1 = np.ones([chunk_size, 1]) | |
mask_shift_att_chunk_decoder_cur = np.concatenate( | |
[zeros_1, ones_1], axis=0 | |
) | |
mask_shift_att_chunk_decoder = np.concatenate( | |
[mask_shift_att_chunk_decoder, mask_shift_att_chunk_decoder_cur], | |
axis=0, | |
) | |
self.x_add_mask = x_add_mask[:x_len_chunk_max, : x_len_max + pad_left] | |
self.x_len_chunk = x_len_chunk | |
self.x_rm_mask = x_rm_mask[:x_len_max, :x_len_chunk_max] | |
self.x_len = x_len | |
self.mask_shfit_chunk = mask_shfit_chunk[:x_len_chunk_max, :] | |
self.mask_chunk_predictor = mask_chunk_predictor[:x_len_chunk_max, :] | |
self.mask_att_chunk_encoder = mask_att_chunk_encoder[ | |
:x_len_chunk_max, :x_len_chunk_max | |
] | |
self.mask_shift_att_chunk_decoder = mask_shift_att_chunk_decoder[ | |
:x_len_chunk_max, : | |
] | |
self.chunk_outs = ( | |
self.x_add_mask, | |
self.x_len_chunk, | |
self.x_rm_mask, | |
self.x_len, | |
self.mask_shfit_chunk, | |
self.mask_chunk_predictor, | |
self.mask_att_chunk_encoder, | |
self.mask_shift_att_chunk_decoder, | |
) | |
return self.chunk_outs | |
def split_chunk(self, x, x_len, chunk_outs): | |
""" | |
:param x: (b, t, d) | |
:param x_length: (b) | |
:param ind: int | |
:return: | |
""" | |
x = x[:, : x_len.max(), :] | |
b, t, d = x.size() | |
x_len_mask = (~make_pad_mask(x_len, maxlen=t)).to(x.device) | |
x *= x_len_mask[:, :, None] | |
x_add_mask = self.get_x_add_mask(chunk_outs, x.device, dtype=x.dtype) | |
x_len_chunk = self.get_x_len_chunk(chunk_outs, x_len.device, dtype=x_len.dtype) | |
pad = (0, 0, self.pad_left_cur, 0) | |
x = F.pad(x, pad, "constant", 0.0) | |
b, t, d = x.size() | |
x = torch.transpose(x, 1, 0) | |
x = torch.reshape(x, [t, -1]) | |
x_chunk = torch.mm(x_add_mask, x) | |
x_chunk = torch.reshape(x_chunk, [-1, b, d]).transpose(1, 0) | |
return x_chunk, x_len_chunk | |
def remove_chunk(self, x_chunk, x_len_chunk, chunk_outs): | |
x_chunk = x_chunk[:, : x_len_chunk.max(), :] | |
b, t, d = x_chunk.size() | |
x_len_chunk_mask = (~make_pad_mask(x_len_chunk, maxlen=t)).to(x_chunk.device) | |
x_chunk *= x_len_chunk_mask[:, :, None] | |
x_rm_mask = self.get_x_rm_mask(chunk_outs, x_chunk.device, dtype=x_chunk.dtype) | |
x_len = self.get_x_len(chunk_outs, x_len_chunk.device, dtype=x_len_chunk.dtype) | |
x_chunk = torch.transpose(x_chunk, 1, 0) | |
x_chunk = torch.reshape(x_chunk, [t, -1]) | |
x = torch.mm(x_rm_mask, x_chunk) | |
x = torch.reshape(x, [-1, b, d]).transpose(1, 0) | |
return x, x_len | |
def get_x_add_mask(self, chunk_outs=None, device="cpu", idx=0, dtype=torch.float32): | |
with torch.no_grad(): | |
x = chunk_outs[idx] if chunk_outs is not None else self.chunk_outs[idx] | |
x = torch.from_numpy(x).type(dtype).to(device) | |
return x | |
def get_x_len_chunk( | |
self, chunk_outs=None, device="cpu", idx=1, dtype=torch.float32 | |
): | |
with torch.no_grad(): | |
x = chunk_outs[idx] if chunk_outs is not None else self.chunk_outs[idx] | |
x = torch.from_numpy(x).type(dtype).to(device) | |
return x | |
def get_x_rm_mask(self, chunk_outs=None, device="cpu", idx=2, dtype=torch.float32): | |
with torch.no_grad(): | |
x = chunk_outs[idx] if chunk_outs is not None else self.chunk_outs[idx] | |
x = torch.from_numpy(x).type(dtype).to(device) | |
return x | |
def get_x_len(self, chunk_outs=None, device="cpu", idx=3, dtype=torch.float32): | |
with torch.no_grad(): | |
x = chunk_outs[idx] if chunk_outs is not None else self.chunk_outs[idx] | |
x = torch.from_numpy(x).type(dtype).to(device) | |
return x | |
def get_mask_shfit_chunk( | |
self, | |
chunk_outs=None, | |
device="cpu", | |
batch_size=1, | |
num_units=1, | |
idx=4, | |
dtype=torch.float32, | |
): | |
with torch.no_grad(): | |
x = chunk_outs[idx] if chunk_outs is not None else self.chunk_outs[idx] | |
x = np.tile( | |
x[ | |
None, | |
:, | |
:, | |
], | |
[batch_size, 1, num_units], | |
) | |
x = torch.from_numpy(x).type(dtype).to(device) | |
return x | |
def get_mask_chunk_predictor( | |
self, | |
chunk_outs=None, | |
device="cpu", | |
batch_size=1, | |
num_units=1, | |
idx=5, | |
dtype=torch.float32, | |
): | |
with torch.no_grad(): | |
x = chunk_outs[idx] if chunk_outs is not None else self.chunk_outs[idx] | |
x = np.tile( | |
x[ | |
None, | |
:, | |
:, | |
], | |
[batch_size, 1, num_units], | |
) | |
x = torch.from_numpy(x).type(dtype).to(device) | |
return x | |
def get_mask_att_chunk_encoder( | |
self, chunk_outs=None, device="cpu", batch_size=1, idx=6, dtype=torch.float32 | |
): | |
with torch.no_grad(): | |
x = chunk_outs[idx] if chunk_outs is not None else self.chunk_outs[idx] | |
x = np.tile( | |
x[ | |
None, | |
:, | |
:, | |
], | |
[batch_size, 1, 1], | |
) | |
x = torch.from_numpy(x).type(dtype).to(device) | |
return x | |
def get_mask_shift_att_chunk_decoder( | |
self, chunk_outs=None, device="cpu", batch_size=1, idx=7, dtype=torch.float32 | |
): | |
with torch.no_grad(): | |
x = chunk_outs[idx] if chunk_outs is not None else self.chunk_outs[idx] | |
x = np.tile(x[None, None, :, 0], [batch_size, 1, 1]) | |
x = torch.from_numpy(x).type(dtype).to(device) | |
return x | |
def build_scama_mask_for_cross_attention_decoder( | |
predictor_alignments: torch.Tensor, | |
encoder_sequence_length: torch.Tensor, | |
chunk_size: int = 5, | |
encoder_chunk_size: int = 5, | |
attention_chunk_center_bias: int = 0, | |
attention_chunk_size: int = 1, | |
attention_chunk_type: str = "chunk", | |
step=None, | |
predictor_mask_chunk_hopping: torch.Tensor = None, | |
decoder_att_look_back_factor: int = 1, | |
mask_shift_att_chunk_decoder: torch.Tensor = None, | |
target_length: torch.Tensor = None, | |
is_training=True, | |
dtype: torch.dtype = torch.float32, | |
): | |
with torch.no_grad(): | |
device = predictor_alignments.device | |
batch_size, chunk_num = predictor_alignments.size() | |
maximum_encoder_length = encoder_sequence_length.max().item() | |
int_type = predictor_alignments.dtype | |
if not is_training: | |
target_length = predictor_alignments.sum(dim=-1).type( | |
encoder_sequence_length.dtype | |
) | |
maximum_target_length = target_length.max() | |
predictor_alignments_cumsum = torch.cumsum(predictor_alignments, dim=1) | |
predictor_alignments_cumsum = predictor_alignments_cumsum[:, None, :].repeat( | |
1, maximum_target_length, 1 | |
) | |
index = torch.ones([batch_size, maximum_target_length], dtype=int_type).to( | |
device | |
) | |
index = torch.cumsum(index, dim=1) | |
index = index[:, :, None].repeat(1, 1, chunk_num) | |
index_div = torch.floor(torch.divide(predictor_alignments_cumsum, index)).type( | |
int_type | |
) | |
index_div_bool_zeros = index_div == 0 | |
index_div_bool_zeros_count = ( | |
torch.sum(index_div_bool_zeros.type(int_type), dim=-1) + 1 | |
) | |
index_div_bool_zeros_count = torch.clip( | |
index_div_bool_zeros_count, min=1, max=chunk_num | |
) | |
index_div_bool_zeros_count *= chunk_size | |
index_div_bool_zeros_count += attention_chunk_center_bias | |
index_div_bool_zeros_count = torch.clip( | |
index_div_bool_zeros_count - 1, min=0, max=maximum_encoder_length | |
) | |
index_div_bool_zeros_count_ori = index_div_bool_zeros_count | |
index_div_bool_zeros_count = ( | |
torch.floor(index_div_bool_zeros_count / encoder_chunk_size) + 1 | |
) * encoder_chunk_size | |
max_len_chunk = ( | |
math.ceil(maximum_encoder_length / encoder_chunk_size) * encoder_chunk_size | |
) | |
mask_flip, mask_flip2 = None, None | |
if attention_chunk_size is not None: | |
index_div_bool_zeros_count_beg = ( | |
index_div_bool_zeros_count - attention_chunk_size | |
) | |
index_div_bool_zeros_count_beg = torch.clip( | |
index_div_bool_zeros_count_beg, 0, max_len_chunk | |
) | |
index_div_bool_zeros_count_beg_mask = sequence_mask( | |
index_div_bool_zeros_count_beg, | |
maxlen=max_len_chunk, | |
dtype=int_type, | |
device=device, | |
) | |
mask_flip = 1 - index_div_bool_zeros_count_beg_mask | |
attention_chunk_size2 = attention_chunk_size * ( | |
decoder_att_look_back_factor + 1 | |
) | |
index_div_bool_zeros_count_beg = ( | |
index_div_bool_zeros_count - attention_chunk_size2 | |
) | |
index_div_bool_zeros_count_beg = torch.clip( | |
index_div_bool_zeros_count_beg, 0, max_len_chunk | |
) | |
index_div_bool_zeros_count_beg_mask = sequence_mask( | |
index_div_bool_zeros_count_beg, | |
maxlen=max_len_chunk, | |
dtype=int_type, | |
device=device, | |
) | |
mask_flip2 = 1 - index_div_bool_zeros_count_beg_mask | |
mask = sequence_mask( | |
index_div_bool_zeros_count, maxlen=max_len_chunk, dtype=dtype, device=device | |
) | |
if predictor_mask_chunk_hopping is not None: | |
b, k, t = mask.size() | |
predictor_mask_chunk_hopping = predictor_mask_chunk_hopping[ | |
:, None, :, 0 | |
].repeat(1, k, 1) | |
mask_mask_flip = mask | |
if mask_flip is not None: | |
mask_mask_flip = mask_flip * mask | |
def _fn(): | |
mask_sliced = mask[:b, :k, encoder_chunk_size:t] | |
zero_pad_right = torch.zeros( | |
[b, k, encoder_chunk_size], dtype=mask_sliced.dtype | |
).to(device) | |
mask_sliced = torch.cat([mask_sliced, zero_pad_right], dim=2) | |
_, _, tt = predictor_mask_chunk_hopping.size() | |
pad_right_p = max_len_chunk - tt | |
predictor_mask_chunk_hopping_pad = torch.nn.functional.pad( | |
predictor_mask_chunk_hopping, [0, pad_right_p], "constant", 0 | |
) | |
masked = mask_sliced * predictor_mask_chunk_hopping_pad | |
mask_true = mask_mask_flip + masked | |
return mask_true | |
mask = _fn() if t > chunk_size else mask_mask_flip | |
if mask_flip2 is not None: | |
mask *= mask_flip2 | |
mask_target = sequence_mask( | |
target_length, maxlen=maximum_target_length, dtype=mask.dtype, device=device | |
) | |
mask = mask[:, :maximum_target_length, :] * mask_target[:, :, None] | |
mask_len = sequence_mask( | |
encoder_sequence_length, | |
maxlen=maximum_encoder_length, | |
dtype=mask.dtype, | |
device=device, | |
) | |
mask = mask[:, :, :maximum_encoder_length] * mask_len[:, None, :] | |
if attention_chunk_type == "full": | |
mask = torch.ones_like(mask).to(device) | |
if mask_shift_att_chunk_decoder is not None: | |
mask = mask * mask_shift_att_chunk_decoder | |
mask = ( | |
mask[:, :maximum_target_length, :maximum_encoder_length] | |
.type(dtype) | |
.to(device) | |
) | |
return mask | |