martin
initial
67c46fd
raw
history blame
6.78 kB
"""SpecAugment module."""
from typing import Optional
from typing import Sequence
from typing import Union
from funasr_detach.models.specaug.mask_along_axis import MaskAlongAxis
from funasr_detach.models.specaug.mask_along_axis import MaskAlongAxisVariableMaxWidth
from funasr_detach.models.specaug.mask_along_axis import MaskAlongAxisLFR
from funasr_detach.models.specaug.time_warp import TimeWarp
from funasr_detach.register import tables
import torch.nn as nn
@tables.register("specaug_classes", "SpecAug")
class SpecAug(nn.Module):
"""Implementation of SpecAug.
Reference:
Daniel S. Park et al.
"SpecAugment: A Simple Data
Augmentation Method for Automatic Speech Recognition"
.. warning::
When using cuda mode, time_warp doesn't have reproducibility
due to `torch.nn.functional.interpolate`.
"""
def __init__(
self,
apply_time_warp: bool = True,
time_warp_window: int = 5,
time_warp_mode: str = "bicubic",
apply_freq_mask: bool = True,
freq_mask_width_range: Union[int, Sequence[int]] = (0, 20),
num_freq_mask: int = 2,
apply_time_mask: bool = True,
time_mask_width_range: Optional[Union[int, Sequence[int]]] = None,
time_mask_width_ratio_range: Optional[Union[float, Sequence[float]]] = None,
num_time_mask: int = 2,
):
if not apply_time_warp and not apply_time_mask and not apply_freq_mask:
raise ValueError(
"Either one of time_warp, time_mask, or freq_mask should be applied"
)
if (
apply_time_mask
and (time_mask_width_range is not None)
and (time_mask_width_ratio_range is not None)
):
raise ValueError(
'Either one of "time_mask_width_range" or '
'"time_mask_width_ratio_range" can be used'
)
super().__init__()
self.apply_time_warp = apply_time_warp
self.apply_freq_mask = apply_freq_mask
self.apply_time_mask = apply_time_mask
if apply_time_warp:
self.time_warp = TimeWarp(window=time_warp_window, mode=time_warp_mode)
else:
self.time_warp = None
if apply_freq_mask:
self.freq_mask = MaskAlongAxis(
dim="freq",
mask_width_range=freq_mask_width_range,
num_mask=num_freq_mask,
)
else:
self.freq_mask = None
if apply_time_mask:
if time_mask_width_range is not None:
self.time_mask = MaskAlongAxis(
dim="time",
mask_width_range=time_mask_width_range,
num_mask=num_time_mask,
)
elif time_mask_width_ratio_range is not None:
self.time_mask = MaskAlongAxisVariableMaxWidth(
dim="time",
mask_width_ratio_range=time_mask_width_ratio_range,
num_mask=num_time_mask,
)
else:
raise ValueError(
'Either one of "time_mask_width_range" or '
'"time_mask_width_ratio_range" should be used.'
)
else:
self.time_mask = None
def forward(self, x, x_lengths=None):
if self.time_warp is not None:
x, x_lengths = self.time_warp(x, x_lengths)
if self.freq_mask is not None:
x, x_lengths = self.freq_mask(x, x_lengths)
if self.time_mask is not None:
x, x_lengths = self.time_mask(x, x_lengths)
return x, x_lengths
@tables.register("specaug_classes", "SpecAugLFR")
class SpecAugLFR(nn.Module):
"""Implementation of SpecAug.
lfr_rate:low frame rate
"""
def __init__(
self,
apply_time_warp: bool = True,
time_warp_window: int = 5,
time_warp_mode: str = "bicubic",
apply_freq_mask: bool = True,
freq_mask_width_range: Union[int, Sequence[int]] = (0, 20),
num_freq_mask: int = 2,
lfr_rate: int = 0,
apply_time_mask: bool = True,
time_mask_width_range: Optional[Union[int, Sequence[int]]] = None,
time_mask_width_ratio_range: Optional[Union[float, Sequence[float]]] = None,
num_time_mask: int = 2,
):
if not apply_time_warp and not apply_time_mask and not apply_freq_mask:
raise ValueError(
"Either one of time_warp, time_mask, or freq_mask should be applied"
)
if (
apply_time_mask
and (time_mask_width_range is not None)
and (time_mask_width_ratio_range is not None)
):
raise ValueError(
'Either one of "time_mask_width_range" or '
'"time_mask_width_ratio_range" can be used'
)
super().__init__()
self.apply_time_warp = apply_time_warp
self.apply_freq_mask = apply_freq_mask
self.apply_time_mask = apply_time_mask
if apply_time_warp:
self.time_warp = TimeWarp(window=time_warp_window, mode=time_warp_mode)
else:
self.time_warp = None
if apply_freq_mask:
self.freq_mask = MaskAlongAxisLFR(
dim="freq",
mask_width_range=freq_mask_width_range,
num_mask=num_freq_mask,
lfr_rate=lfr_rate + 1,
)
else:
self.freq_mask = None
if apply_time_mask:
if time_mask_width_range is not None:
self.time_mask = MaskAlongAxisLFR(
dim="time",
mask_width_range=time_mask_width_range,
num_mask=num_time_mask,
lfr_rate=lfr_rate + 1,
)
elif time_mask_width_ratio_range is not None:
self.time_mask = MaskAlongAxisVariableMaxWidth(
dim="time",
mask_width_ratio_range=time_mask_width_ratio_range,
num_mask=num_time_mask,
)
else:
raise ValueError(
'Either one of "time_mask_width_range" or '
'"time_mask_width_ratio_range" should be used.'
)
else:
self.time_mask = None
def forward(self, x, x_lengths=None):
if self.time_warp is not None:
x, x_lengths = self.time_warp(x, x_lengths)
if self.freq_mask is not None:
x, x_lengths = self.freq_mask(x, x_lengths)
if self.time_mask is not None:
x, x_lengths = self.time_mask(x, x_lengths)
return x, x_lengths