Spaces:
Running
Running
"""Dynamic Convolution module.""" | |
import numpy | |
import torch | |
from torch import nn | |
import torch.nn.functional as F | |
MIN_VALUE = float(numpy.finfo(numpy.float32).min) | |
class DynamicConvolution(nn.Module): | |
"""Dynamic Convolution layer. | |
This implementation is based on | |
https://github.com/pytorch/fairseq/tree/master/fairseq | |
Args: | |
wshare (int): the number of kernel of convolution | |
n_feat (int): the number of features | |
dropout_rate (float): dropout_rate | |
kernel_size (int): kernel size (length) | |
use_kernel_mask (bool): Use causal mask or not for convolution kernel | |
use_bias (bool): Use bias term or not. | |
""" | |
def __init__( | |
self, | |
wshare, | |
n_feat, | |
dropout_rate, | |
kernel_size, | |
use_kernel_mask=False, | |
use_bias=False, | |
): | |
"""Construct Dynamic Convolution layer.""" | |
super(DynamicConvolution, self).__init__() | |
assert n_feat % wshare == 0 | |
self.wshare = wshare | |
self.use_kernel_mask = use_kernel_mask | |
self.dropout_rate = dropout_rate | |
self.kernel_size = kernel_size | |
self.attn = None | |
# linear -> GLU -- -> lightconv -> linear | |
# \ / | |
# Linear | |
self.linear1 = nn.Linear(n_feat, n_feat * 2) | |
self.linear2 = nn.Linear(n_feat, n_feat) | |
self.linear_weight = nn.Linear(n_feat, self.wshare * 1 * kernel_size) | |
nn.init.xavier_uniform(self.linear_weight.weight) | |
self.act = nn.GLU() | |
# dynamic conv related | |
self.use_bias = use_bias | |
if self.use_bias: | |
self.bias = nn.Parameter(torch.Tensor(n_feat)) | |
def forward(self, query, key, value, mask): | |
"""Forward of 'Dynamic Convolution'. | |
This function takes query, key and value but uses only quert. | |
This is just for compatibility with self-attention layer (attention.py) | |
Args: | |
query (torch.Tensor): (batch, time1, d_model) input tensor | |
key (torch.Tensor): (batch, time2, d_model) NOT USED | |
value (torch.Tensor): (batch, time2, d_model) NOT USED | |
mask (torch.Tensor): (batch, time1, time2) mask | |
Return: | |
x (torch.Tensor): (batch, time1, d_model) output | |
""" | |
# linear -> GLU -- -> lightconv -> linear | |
# \ / | |
# Linear | |
x = query | |
B, T, C = x.size() | |
H = self.wshare | |
k = self.kernel_size | |
# first liner layer | |
x = self.linear1(x) | |
# GLU activation | |
x = self.act(x) | |
# get kernel of convolution | |
weight = self.linear_weight(x) # B x T x kH | |
weight = F.dropout(weight, self.dropout_rate, training=self.training) | |
weight = weight.view(B, T, H, k).transpose(1, 2).contiguous() # B x H x T x k | |
weight_new = torch.zeros(B * H * T * (T + k - 1), dtype=weight.dtype) | |
weight_new = weight_new.view(B, H, T, T + k - 1).fill_(float("-inf")) | |
weight_new = weight_new.to(x.device) # B x H x T x T+k-1 | |
weight_new.as_strided( | |
(B, H, T, k), ((T + k - 1) * T * H, (T + k - 1) * T, T + k, 1) | |
).copy_(weight) | |
weight_new = weight_new.narrow(-1, int((k - 1) / 2), T) # B x H x T x T(k) | |
if self.use_kernel_mask: | |
kernel_mask = torch.tril(torch.ones(T, T, device=x.device)).unsqueeze(0) | |
weight_new = weight_new.masked_fill(kernel_mask == 0.0, float("-inf")) | |
weight_new = F.softmax(weight_new, dim=-1) | |
self.attn = weight_new | |
weight_new = weight_new.view(B * H, T, T) | |
# convolution | |
x = x.transpose(1, 2).contiguous() # B x C x T | |
x = x.view(B * H, int(C / H), T).transpose(1, 2) | |
x = torch.bmm(weight_new, x) # BH x T x C/H | |
x = x.transpose(1, 2).contiguous().view(B, C, T) | |
if self.use_bias: | |
x = x + self.bias.view(1, -1, 1) | |
x = x.transpose(1, 2) # B x T x C | |
if mask is not None and not self.use_kernel_mask: | |
mask = mask.transpose(-1, -2) | |
x = x.masked_fill(mask == 0, 0.0) | |
# second linear layer | |
x = self.linear2(x) | |
return x | |