Spaces:
Running
Running
# Copyright 2019 Shigeki Karita | |
# Apache 2.0 (http://www.apache.org/licenses/LICENSE-2.0) | |
"""Mask module.""" | |
import torch | |
def subsequent_mask(size, device="cpu", dtype=torch.bool): | |
"""Create mask for subsequent steps (size, size). | |
:param int size: size of mask | |
:param str device: "cpu" or "cuda" or torch.Tensor.device | |
:param torch.dtype dtype: result dtype | |
:rtype: torch.Tensor | |
>>> subsequent_mask(3) | |
[[1, 0, 0], | |
[1, 1, 0], | |
[1, 1, 1]] | |
""" | |
ret = torch.ones(size, size, device=device, dtype=dtype) | |
return torch.tril(ret, out=ret) | |
def target_mask(ys_in_pad, ignore_id): | |
"""Create mask for decoder self-attention. | |
:param torch.Tensor ys_pad: batch of padded target sequences (B, Lmax) | |
:param int ignore_id: index of padding | |
:param torch.dtype dtype: result dtype | |
:rtype: torch.Tensor (B, Lmax, Lmax) | |
""" | |
ys_mask = ys_in_pad != ignore_id | |
m = subsequent_mask(ys_mask.size(-1), device=ys_mask.device).unsqueeze(0) | |
return ys_mask.unsqueeze(-2) & m | |
def vad_mask(size, vad_pos, device="cpu", dtype=torch.bool): | |
"""Create mask for decoder self-attention. | |
:param int size: size of mask | |
:param int vad_pos: index of vad index | |
:param str device: "cpu" or "cuda" or torch.Tensor.device | |
:param torch.dtype dtype: result dtype | |
:rtype: torch.Tensor (B, Lmax, Lmax) | |
""" | |
ret = torch.ones(size, size, device=device, dtype=dtype) | |
if vad_pos <= 0 or vad_pos >= size: | |
return ret | |
sub_corner = torch.zeros(vad_pos - 1, size - vad_pos, device=device, dtype=dtype) | |
ret[0 : vad_pos - 1, vad_pos:] = sub_corner | |
return ret | |