Spaces:
Running
Running
#!/usr/bin/env python3 | |
# -*- coding: utf-8 -*- | |
# Copyright 2019 Shigeki Karita | |
# Apache 2.0 (http://www.apache.org/licenses/LICENSE-2.0) | |
"""Repeat the same layer definition.""" | |
from typing import Dict, List, Optional | |
from funasr_detach.models.transformer.layer_norm import LayerNorm | |
import torch | |
class MultiSequential(torch.nn.Sequential): | |
"""Multi-input multi-output torch.nn.Sequential.""" | |
def __init__(self, *args, layer_drop_rate=0.0): | |
"""Initialize MultiSequential with layer_drop. | |
Args: | |
layer_drop_rate (float): Probability of dropping out each fn (layer). | |
""" | |
super(MultiSequential, self).__init__(*args) | |
self.layer_drop_rate = layer_drop_rate | |
def forward(self, *args): | |
"""Repeat.""" | |
_probs = torch.empty(len(self)).uniform_() | |
for idx, m in enumerate(self): | |
if not self.training or (_probs[idx] >= self.layer_drop_rate): | |
args = m(*args) | |
return args | |
def repeat(N, fn, layer_drop_rate=0.0): | |
"""Repeat module N times. | |
Args: | |
N (int): Number of repeat time. | |
fn (Callable): Function to generate module. | |
layer_drop_rate (float): Probability of dropping out each fn (layer). | |
Returns: | |
MultiSequential: Repeated model instance. | |
""" | |
return MultiSequential(*[fn(n) for n in range(N)], layer_drop_rate=layer_drop_rate) | |
class MultiBlocks(torch.nn.Module): | |
"""MultiBlocks definition. | |
Args: | |
block_list: Individual blocks of the encoder architecture. | |
output_size: Architecture output size. | |
norm_class: Normalization module class. | |
norm_args: Normalization module arguments. | |
""" | |
def __init__( | |
self, | |
block_list: List[torch.nn.Module], | |
output_size: int, | |
norm_class: torch.nn.Module = LayerNorm, | |
) -> None: | |
"""Construct a MultiBlocks object.""" | |
super().__init__() | |
self.blocks = torch.nn.ModuleList(block_list) | |
self.norm_blocks = norm_class(output_size) | |
self.num_blocks = len(block_list) | |
def reset_streaming_cache(self, left_context: int, device: torch.device) -> None: | |
"""Initialize/Reset encoder streaming cache. | |
Args: | |
left_context: Number of left frames during chunk-by-chunk inference. | |
device: Device to use for cache tensor. | |
""" | |
for idx in range(self.num_blocks): | |
self.blocks[idx].reset_streaming_cache(left_context, device) | |
def forward( | |
self, | |
x: torch.Tensor, | |
pos_enc: torch.Tensor, | |
mask: torch.Tensor, | |
chunk_mask: Optional[torch.Tensor] = None, | |
) -> torch.Tensor: | |
"""Forward each block of the encoder architecture. | |
Args: | |
x: MultiBlocks input sequences. (B, T, D_block_1) | |
pos_enc: Positional embedding sequences. | |
mask: Source mask. (B, T) | |
chunk_mask: Chunk mask. (T_2, T_2) | |
Returns: | |
x: Output sequences. (B, T, D_block_N) | |
""" | |
for block_index, block in enumerate(self.blocks): | |
x, mask, pos_enc = block(x, pos_enc, mask, chunk_mask=chunk_mask) | |
x = self.norm_blocks(x) | |
return x | |
def chunk_forward( | |
self, | |
x: torch.Tensor, | |
pos_enc: torch.Tensor, | |
mask: torch.Tensor, | |
chunk_size: int = 0, | |
left_context: int = 0, | |
right_context: int = 0, | |
) -> torch.Tensor: | |
"""Forward each block of the encoder architecture. | |
Args: | |
x: MultiBlocks input sequences. (B, T, D_block_1) | |
pos_enc: Positional embedding sequences. (B, 2 * (T - 1), D_att) | |
mask: Source mask. (B, T_2) | |
left_context: Number of frames in left context. | |
right_context: Number of frames in right context. | |
Returns: | |
x: MultiBlocks output sequences. (B, T, D_block_N) | |
""" | |
for block_idx, block in enumerate(self.blocks): | |
x, pos_enc = block.chunk_forward( | |
x, | |
pos_enc, | |
mask, | |
chunk_size=chunk_size, | |
left_context=left_context, | |
right_context=right_context, | |
) | |
x = self.norm_blocks(x) | |
return x | |