Spaces:
Running
Running
# Copyright 2020 Emiru Tsunoo | |
# Apache 2.0 (http://www.apache.org/licenses/LICENSE-2.0) | |
"""Subsampling layer definition.""" | |
import math | |
import torch | |
class Conv2dSubsamplingWOPosEnc(torch.nn.Module): | |
"""Convolutional 2D subsampling. | |
Args: | |
idim (int): Input dimension. | |
odim (int): Output dimension. | |
dropout_rate (float): Dropout rate. | |
kernels (list): kernel sizes | |
strides (list): stride sizes | |
""" | |
def __init__(self, idim, odim, dropout_rate, kernels, strides): | |
"""Construct an Conv2dSubsamplingWOPosEnc object.""" | |
assert len(kernels) == len(strides) | |
super().__init__() | |
conv = [] | |
olen = idim | |
for i, (k, s) in enumerate(zip(kernels, strides)): | |
conv += [ | |
torch.nn.Conv2d(1 if i == 0 else odim, odim, k, s), | |
torch.nn.ReLU(), | |
] | |
olen = math.floor((olen - k) / s + 1) | |
self.conv = torch.nn.Sequential(*conv) | |
self.out = torch.nn.Linear(odim * olen, odim) | |
self.strides = strides | |
self.kernels = kernels | |
def forward(self, x, x_mask): | |
"""Subsample x. | |
Args: | |
x (torch.Tensor): Input tensor (#batch, time, idim). | |
x_mask (torch.Tensor): Input mask (#batch, 1, time). | |
Returns: | |
torch.Tensor: Subsampled tensor (#batch, time', odim), | |
where time' = time // 4. | |
torch.Tensor: Subsampled mask (#batch, 1, time'), | |
where time' = time // 4. | |
""" | |
x = x.unsqueeze(1) # (b, c, t, f) | |
x = self.conv(x) | |
b, c, t, f = x.size() | |
x = self.out(x.transpose(1, 2).contiguous().view(b, t, c * f)) | |
if x_mask is None: | |
return x, None | |
for k, s in zip(self.kernels, self.strides): | |
x_mask = x_mask[:, :, : -k + 1 : s] | |
return x, x_mask | |