Step-Audio / funasr_detach /tokenizer /phoneme_tokenizer.py
martin
initial
67c46fd
raw
history blame
16.5 kB
import logging
from pathlib import Path
import re
from typing import Iterable
from typing import List
from typing import Optional
from typing import Union
import warnings
# import g2p_en
import jamo
from funasr_detach.tokenizer.abs_tokenizer import AbsTokenizer
g2p_classes = [
None,
"g2p_en",
"g2p_en_no_space",
"pyopenjtalk",
"pyopenjtalk_kana",
"pyopenjtalk_accent",
"pyopenjtalk_accent_with_pause",
"pyopenjtalk_prosody",
"pypinyin_g2p",
"pypinyin_g2p_phone",
"espeak_ng_arabic",
"espeak_ng_german",
"espeak_ng_french",
"espeak_ng_spanish",
"espeak_ng_russian",
"espeak_ng_greek",
"espeak_ng_finnish",
"espeak_ng_hungarian",
"espeak_ng_dutch",
"espeak_ng_english_us_vits",
"espeak_ng_hindi",
"g2pk",
"g2pk_no_space",
"korean_jaso",
"korean_jaso_no_space",
]
def split_by_space(text) -> List[str]:
if " " in text:
text = text.replace(" ", " <space> ")
return [c.replace("<space>", " ") for c in text.split(" ")]
else:
return text.split(" ")
def pyopenjtalk_g2p(text) -> List[str]:
import pyopenjtalk
# phones is a str object separated by space
phones = pyopenjtalk.g2p(text, kana=False)
phones = phones.split(" ")
return phones
def pyopenjtalk_g2p_accent(text) -> List[str]:
import pyopenjtalk
import re
phones = []
for labels in pyopenjtalk.run_frontend(text)[1]:
p = re.findall(r"\-(.*?)\+.*?\/A:([0-9\-]+).*?\/F:.*?_([0-9]+)", labels)
if len(p) == 1:
phones += [p[0][0], p[0][2], p[0][1]]
return phones
def pyopenjtalk_g2p_accent_with_pause(text) -> List[str]:
import pyopenjtalk
import re
phones = []
for labels in pyopenjtalk.run_frontend(text)[1]:
if labels.split("-")[1].split("+")[0] == "pau":
phones += ["pau"]
continue
p = re.findall(r"\-(.*?)\+.*?\/A:([0-9\-]+).*?\/F:.*?_([0-9]+)", labels)
if len(p) == 1:
phones += [p[0][0], p[0][2], p[0][1]]
return phones
def pyopenjtalk_g2p_kana(text) -> List[str]:
import pyopenjtalk
kanas = pyopenjtalk.g2p(text, kana=True)
return list(kanas)
def pyopenjtalk_g2p_prosody(text: str, drop_unvoiced_vowels: bool = True) -> List[str]:
"""Extract phoneme + prosoody symbol sequence from input full-context labels.
The algorithm is based on `Prosodic features control by symbols as input of
sequence-to-sequence acoustic modeling for neural TTS`_ with some r9y9's tweaks.
Args:
text (str): Input text.
drop_unvoiced_vowels (bool): whether to drop unvoiced vowels.
Returns:
List[str]: List of phoneme + prosody symbols.
Examples:
>>> from funasr_detach.tokenizer.phoneme_tokenizer import pyopenjtalk_g2p_prosody
>>> pyopenjtalk_g2p_prosody("こんにけは。")
['^', 'k', 'o', '[', 'N', 'n', 'i', 'ch', 'i', 'w', 'a', '$']
.. _`Prosodic features control by symbols as input of sequence-to-sequence acoustic
modeling for neural TTS`: https://doi.org/10.1587/transinf.2020EDP7104
"""
import pyopenjtalk
labels = pyopenjtalk.run_frontend(text)[1]
N = len(labels)
phones = []
for n in range(N):
lab_curr = labels[n]
# current phoneme
p3 = re.search(r"\-(.*?)\+", lab_curr).group(1)
# deal unvoiced vowels as normal vowels
if drop_unvoiced_vowels and p3 in "AEIOU":
p3 = p3.lower()
# deal with sil at the beginning and the end of text
if p3 == "sil":
assert n == 0 or n == N - 1
if n == 0:
phones.append("^")
elif n == N - 1:
# check question form or not
e3 = _numeric_feature_by_regex(r"!(\d+)_", lab_curr)
if e3 == 0:
phones.append("$")
elif e3 == 1:
phones.append("?")
continue
elif p3 == "pau":
phones.append("_")
continue
else:
phones.append(p3)
# accent type and position info (forward or backward)
a1 = _numeric_feature_by_regex(r"/A:([0-9\-]+)\+", lab_curr)
a2 = _numeric_feature_by_regex(r"\+(\d+)\+", lab_curr)
a3 = _numeric_feature_by_regex(r"\+(\d+)/", lab_curr)
# number of mora in accent phrase
f1 = _numeric_feature_by_regex(r"/F:(\d+)_", lab_curr)
a2_next = _numeric_feature_by_regex(r"\+(\d+)\+", labels[n + 1])
# accent phrase border
if a3 == 1 and a2_next == 1 and p3 in "aeiouAEIOUNcl":
phones.append("#")
# pitch falling
elif a1 == 0 and a2_next == a2 + 1 and a2 != f1:
phones.append("]")
# pitch rising
elif a2 == 1 and a2_next == 2:
phones.append("[")
return phones
def _numeric_feature_by_regex(regex, s):
match = re.search(regex, s)
if match is None:
return -50
return int(match.group(1))
def pypinyin_g2p(text) -> List[str]:
from pypinyin import pinyin
from pypinyin import Style
phones = [phone[0] for phone in pinyin(text, style=Style.TONE3)]
return phones
def pypinyin_g2p_phone(text) -> List[str]:
from pypinyin import pinyin
from pypinyin import Style
from pypinyin.style._utils import get_finals
from pypinyin.style._utils import get_initials
phones = [
p
for phone in pinyin(text, style=Style.TONE3)
for p in [
get_initials(phone[0], strict=True),
get_finals(phone[0], strict=True),
]
if len(p) != 0
]
return phones
class G2p_en:
"""On behalf of g2p_en.G2p.
g2p_en.G2p isn't pickalable and it can't be copied to the other processes
via multiprocessing module.
As a workaround, g2p_en.G2p is instantiated upon calling this class.
"""
def __init__(self, no_space: bool = False):
self.no_space = no_space
self.g2p = None
def __call__(self, text) -> List[str]:
if self.g2p is None:
self.g2p = g2p_en.G2p()
phones = self.g2p(text)
if self.no_space:
# remove space which represents word serapater
phones = list(filter(lambda s: s != " ", phones))
return phones
class G2pk:
"""On behalf of g2pk.G2p.
g2pk.G2p isn't pickalable and it can't be copied to the other processes
via multiprocessing module.
As a workaround, g2pk.G2p is instantiated upon calling this class.
"""
def __init__(
self, descritive=False, group_vowels=False, to_syl=False, no_space=False
):
self.descritive = descritive
self.group_vowels = group_vowels
self.to_syl = to_syl
self.no_space = no_space
self.g2p = None
def __call__(self, text) -> List[str]:
if self.g2p is None:
import g2pk
self.g2p = g2pk.G2p()
phones = list(
self.g2p(
text,
descriptive=self.descritive,
group_vowels=self.group_vowels,
to_syl=self.to_syl,
)
)
if self.no_space:
# remove space which represents word serapater
phones = list(filter(lambda s: s != " ", phones))
return phones
class Jaso:
PUNC = "!'(),-.:;?"
SPACE = " "
JAMO_LEADS = "".join([chr(_) for _ in range(0x1100, 0x1113)])
JAMO_VOWELS = "".join([chr(_) for _ in range(0x1161, 0x1176)])
JAMO_TAILS = "".join([chr(_) for _ in range(0x11A8, 0x11C3)])
VALID_CHARS = JAMO_LEADS + JAMO_VOWELS + JAMO_TAILS + PUNC + SPACE
def __init__(self, space_symbol=" ", no_space=False):
self.space_symbol = space_symbol
self.no_space = no_space
def _text_to_jaso(self, line: str) -> List[str]:
jasos = list(jamo.hangul_to_jamo(line))
return jasos
def _remove_non_korean_characters(self, tokens):
new_tokens = [token for token in tokens if token in self.VALID_CHARS]
return new_tokens
def __call__(self, text) -> List[str]:
graphemes = [x for x in self._text_to_jaso(text)]
graphemes = self._remove_non_korean_characters(graphemes)
if self.no_space:
graphemes = list(filter(lambda s: s != " ", graphemes))
else:
graphemes = [x if x != " " else self.space_symbol for x in graphemes]
return graphemes
class Phonemizer:
"""Phonemizer module for various languages.
This is wrapper module of https://github.com/bootphon/phonemizer.
You can define various g2p modules by specifying options for phonemizer.
See available options:
https://github.com/bootphon/phonemizer/blob/master/phonemizer/phonemize.py#L32
"""
def __init__(
self,
backend,
word_separator: Optional[str] = None,
syllable_separator: Optional[str] = None,
phone_separator: Optional[str] = " ",
strip=False,
split_by_single_token: bool = False,
**phonemizer_kwargs,
):
# delayed import
from phonemizer.backend import BACKENDS
from phonemizer.separator import Separator
self.separator = Separator(
word=word_separator,
syllable=syllable_separator,
phone=phone_separator,
)
# define logger to suppress the warning in phonemizer
logger = logging.getLogger("phonemizer")
logger.setLevel(logging.ERROR)
self.phonemizer = BACKENDS[backend](
**phonemizer_kwargs,
logger=logger,
)
self.strip = strip
self.split_by_single_token = split_by_single_token
def __call__(self, text) -> List[str]:
tokens = self.phonemizer.phonemize(
[text],
separator=self.separator,
strip=self.strip,
njobs=1,
)[0]
if not self.split_by_single_token:
return tokens.split()
else:
# "a: ab" -> ["a", ":", "<space>", "a", "b"]
# TODO(kan-bayashi): space replacement should be dealt in PhonemeTokenizer
return [c.replace(" ", "<space>") for c in tokens]
class PhonemeTokenizer(AbsTokenizer):
def __init__(
self,
g2p_type: Union[None, str],
non_linguistic_symbols: Union[Path, str, Iterable[str]] = None,
space_symbol: str = "<space>",
remove_non_linguistic_symbols: bool = False,
):
if g2p_type is None:
self.g2p = split_by_space
elif g2p_type == "g2p_en":
self.g2p = G2p_en(no_space=False)
elif g2p_type == "g2p_en_no_space":
self.g2p = G2p_en(no_space=True)
elif g2p_type == "pyopenjtalk":
self.g2p = pyopenjtalk_g2p
elif g2p_type == "pyopenjtalk_kana":
self.g2p = pyopenjtalk_g2p_kana
elif g2p_type == "pyopenjtalk_accent":
self.g2p = pyopenjtalk_g2p_accent
elif g2p_type == "pyopenjtalk_accent_with_pause":
self.g2p = pyopenjtalk_g2p_accent_with_pause
elif g2p_type == "pyopenjtalk_prosody":
self.g2p = pyopenjtalk_g2p_prosody
elif g2p_type == "pypinyin_g2p":
self.g2p = pypinyin_g2p
elif g2p_type == "pypinyin_g2p_phone":
self.g2p = pypinyin_g2p_phone
elif g2p_type == "espeak_ng_arabic":
self.g2p = Phonemizer(
language="ar",
backend="espeak",
with_stress=True,
preserve_punctuation=True,
)
elif g2p_type == "espeak_ng_german":
self.g2p = Phonemizer(
language="de",
backend="espeak",
with_stress=True,
preserve_punctuation=True,
)
elif g2p_type == "espeak_ng_french":
self.g2p = Phonemizer(
language="fr-fr",
backend="espeak",
with_stress=True,
preserve_punctuation=True,
)
elif g2p_type == "espeak_ng_spanish":
self.g2p = Phonemizer(
language="es",
backend="espeak",
with_stress=True,
preserve_punctuation=True,
)
elif g2p_type == "espeak_ng_russian":
self.g2p = Phonemizer(
language="ru",
backend="espeak",
with_stress=True,
preserve_punctuation=True,
)
elif g2p_type == "espeak_ng_greek":
self.g2p = Phonemizer(
language="el",
backend="espeak",
with_stress=True,
preserve_punctuation=True,
)
elif g2p_type == "espeak_ng_finnish":
self.g2p = Phonemizer(
language="fi",
backend="espeak",
with_stress=True,
preserve_punctuation=True,
)
elif g2p_type == "espeak_ng_hungarian":
self.g2p = Phonemizer(
language="hu",
backend="espeak",
with_stress=True,
preserve_punctuation=True,
)
elif g2p_type == "espeak_ng_dutch":
self.g2p = Phonemizer(
language="nl",
backend="espeak",
with_stress=True,
preserve_punctuation=True,
)
elif g2p_type == "espeak_ng_hindi":
self.g2p = Phonemizer(
language="hi",
backend="espeak",
with_stress=True,
preserve_punctuation=True,
)
elif g2p_type == "g2pk":
self.g2p = G2pk(no_space=False)
elif g2p_type == "g2pk_no_space":
self.g2p = G2pk(no_space=True)
elif g2p_type == "espeak_ng_english_us_vits":
# VITS official implementation-like processing
# Reference: https://github.com/jaywalnut310/vits
self.g2p = Phonemizer(
language="en-us",
backend="espeak",
with_stress=True,
preserve_punctuation=True,
strip=True,
word_separator=" ",
phone_separator="",
split_by_single_token=True,
)
elif g2p_type == "korean_jaso":
self.g2p = Jaso(space_symbol=space_symbol, no_space=False)
elif g2p_type == "korean_jaso_no_space":
self.g2p = Jaso(no_space=True)
else:
raise NotImplementedError(f"Not supported: g2p_type={g2p_type}")
self.g2p_type = g2p_type
self.space_symbol = space_symbol
if non_linguistic_symbols is None:
self.non_linguistic_symbols = set()
elif isinstance(non_linguistic_symbols, (Path, str)):
non_linguistic_symbols = Path(non_linguistic_symbols)
try:
with non_linguistic_symbols.open("r", encoding="utf-8") as f:
self.non_linguistic_symbols = set(line.rstrip() for line in f)
except FileNotFoundError:
warnings.warn(f"{non_linguistic_symbols} doesn't exist.")
self.non_linguistic_symbols = set()
else:
self.non_linguistic_symbols = set(non_linguistic_symbols)
self.remove_non_linguistic_symbols = remove_non_linguistic_symbols
def __repr__(self):
return (
f"{self.__class__.__name__}("
f'g2p_type="{self.g2p_type}", '
f'space_symbol="{self.space_symbol}", '
f'non_linguistic_symbols="{self.non_linguistic_symbols}"'
")"
)
def text2tokens(self, line: str) -> List[str]:
tokens = []
while len(line) != 0:
for w in self.non_linguistic_symbols:
if line.startswith(w):
if not self.remove_non_linguistic_symbols:
tokens.append(line[: len(w)])
line = line[len(w) :]
break
else:
t = line[0]
tokens.append(t)
line = line[1:]
line = "".join(tokens)
tokens = self.g2p(line)
return tokens
def tokens2text(self, tokens: Iterable[str]) -> str:
# phoneme type is not invertible
return "".join(tokens)