Spaces:
Running
Running
from pathlib import Path | |
from typing import Iterable | |
from typing import List | |
from typing import Union | |
import sentencepiece as spm | |
from funasr_detach.tokenizer.abs_tokenizer import BaseTokenizer | |
from funasr_detach.register import tables | |
class SentencepiecesTokenizer(BaseTokenizer): | |
def __init__(self, bpemodel: Union[Path, str], **kwargs): | |
super().__init__(**kwargs) | |
self.bpemodel = str(bpemodel) | |
# NOTE(kamo): | |
# Don't build SentencePieceProcessor in __init__() | |
# because it's not picklable and it may cause following error, | |
# "TypeError: can't pickle SwigPyObject objects", | |
# when giving it as argument of "multiprocessing.Process()". | |
self.sp = None | |
def __repr__(self): | |
return f'{self.__class__.__name__}(model="{self.bpemodel}")' | |
def _build_sentence_piece_processor(self): | |
# Build SentencePieceProcessor lazily. | |
if self.sp is None: | |
self.sp = spm.SentencePieceProcessor() | |
self.sp.load(self.bpemodel) | |
def text2tokens(self, line: str) -> List[str]: | |
self._build_sentence_piece_processor() | |
return self.sp.EncodeAsPieces(line) | |
def tokens2text(self, tokens: Iterable[str]) -> str: | |
self._build_sentence_piece_processor() | |
return self.sp.DecodePieces(list(tokens)) | |
def encode(self, line: str) -> List[int]: | |
self._build_sentence_piece_processor() | |
return self.sp.EncodeAsIds(line) | |
def decode(self, line: List[int]): | |
self._build_sentence_piece_processor() | |
return self.sp.DecodeIds(line) | |