Spaces:
Running
Running
import logging | |
from pathlib import Path | |
from typing import Optional | |
from typing import Sequence | |
from typing import Union | |
import warnings | |
import os | |
from io import BytesIO | |
import torch | |
from typing import Collection | |
import os | |
import torch | |
import re | |
from collections import OrderedDict | |
from functools import cmp_to_key | |
# @torch.no_grad() | |
# def average_nbest_models( | |
# output_dir: Path, | |
# best_model_criterion: Sequence[Sequence[str]], | |
# nbest: Union[Collection[int], int], | |
# suffix: Optional[str] = None, | |
# oss_bucket=None, | |
# pai_output_dir=None, | |
# ) -> None: | |
# """Generate averaged model from n-best models | |
# | |
# Args: | |
# output_dir: The directory contains the model file for each epoch | |
# reporter: Reporter instance | |
# best_model_criterion: Give criterions to decide the best model. | |
# e.g. [("valid", "loss", "min"), ("train", "acc", "max")] | |
# nbest: Number of best model files to be averaged | |
# suffix: A suffix added to the averaged model file name | |
# """ | |
# if isinstance(nbest, int): | |
# nbests = [nbest] | |
# else: | |
# nbests = list(nbest) | |
# if len(nbests) == 0: | |
# warnings.warn("At least 1 nbest values are required") | |
# nbests = [1] | |
# if suffix is not None: | |
# suffix = suffix + "." | |
# else: | |
# suffix = "" | |
# | |
# # 1. Get nbests: List[Tuple[str, str, List[Tuple[epoch, value]]]] | |
# nbest_epochs = [ | |
# (ph, k, reporter.sort_epochs_and_values(ph, k, m)[: max(nbests)]) | |
# for ph, k, m in best_model_criterion | |
# if reporter.has(ph, k) | |
# ] | |
# | |
# _loaded = {} | |
# for ph, cr, epoch_and_values in nbest_epochs: | |
# _nbests = [i for i in nbests if i <= len(epoch_and_values)] | |
# if len(_nbests) == 0: | |
# _nbests = [1] | |
# | |
# for n in _nbests: | |
# if n == 0: | |
# continue | |
# elif n == 1: | |
# # The averaged model is same as the best model | |
# e, _ = epoch_and_values[0] | |
# op = output_dir / f"{e}epoch.pb" | |
# sym_op = output_dir / f"{ph}.{cr}.ave_1best.{suffix}pb" | |
# if sym_op.is_symlink() or sym_op.exists(): | |
# sym_op.unlink() | |
# sym_op.symlink_to(op.name) | |
# else: | |
# op = output_dir / f"{ph}.{cr}.ave_{n}best.{suffix}pb" | |
# logging.info( | |
# f"Averaging {n}best models: " f'criterion="{ph}.{cr}": {op}' | |
# ) | |
# | |
# avg = None | |
# # 2.a. Averaging model | |
# for e, _ in epoch_and_values[:n]: | |
# if e not in _loaded: | |
# if oss_bucket is None: | |
# _loaded[e] = torch.load( | |
# output_dir / f"{e}epoch.pb", | |
# map_location="cpu", | |
# ) | |
# else: | |
# buffer = BytesIO( | |
# oss_bucket.get_object(os.path.join(pai_output_dir, f"{e}epoch.pb")).read()) | |
# _loaded[e] = torch.load(buffer) | |
# states = _loaded[e] | |
# | |
# if avg is None: | |
# avg = states | |
# else: | |
# # Accumulated | |
# for k in avg: | |
# avg[k] = avg[k] + states[k] | |
# for k in avg: | |
# if str(avg[k].dtype).startswith("torch.int"): | |
# # For int type, not averaged, but only accumulated. | |
# # e.g. BatchNorm.num_batches_tracked | |
# # (If there are any cases that requires averaging | |
# # or the other reducing method, e.g. max/min, for integer type, | |
# # please report.) | |
# pass | |
# else: | |
# avg[k] = avg[k] / n | |
# | |
# # 2.b. Save the ave model and create a symlink | |
# if oss_bucket is None: | |
# torch.save(avg, op) | |
# else: | |
# buffer = BytesIO() | |
# torch.save(avg, buffer) | |
# oss_bucket.put_object(os.path.join(pai_output_dir, f"{ph}.{cr}.ave_{n}best.{suffix}pb"), | |
# buffer.getvalue()) | |
# | |
# # 3. *.*.ave.pb is a symlink to the max ave model | |
# if oss_bucket is None: | |
# op = output_dir / f"{ph}.{cr}.ave_{max(_nbests)}best.{suffix}pb" | |
# sym_op = output_dir / f"{ph}.{cr}.ave.{suffix}pb" | |
# if sym_op.is_symlink() or sym_op.exists(): | |
# sym_op.unlink() | |
# sym_op.symlink_to(op.name) | |
def _get_checkpoint_paths(output_dir: str, last_n: int = 5): | |
""" | |
Get the paths of the last 'last_n' checkpoints by parsing filenames | |
in the output directory. | |
""" | |
# List all files in the output directory | |
files = os.listdir(output_dir) | |
# Filter out checkpoint files and extract epoch numbers | |
checkpoint_files = [f for f in files if f.startswith("model.pt.e")] | |
# Sort files by epoch number in descending order | |
checkpoint_files.sort( | |
key=lambda x: int(re.search(r"(\d+)", x).group()), reverse=True | |
) | |
# Get the last 'last_n' checkpoint paths | |
checkpoint_paths = [os.path.join(output_dir, f) for f in checkpoint_files[:last_n]] | |
return checkpoint_paths | |
def average_checkpoints(output_dir: str, last_n: int = 5): | |
""" | |
Average the last 'last_n' checkpoints' model state_dicts. | |
If a tensor is of type torch.int, perform sum instead of average. | |
""" | |
checkpoint_paths = _get_checkpoint_paths(output_dir, last_n) | |
state_dicts = [] | |
# Load state_dicts from checkpoints | |
for path in checkpoint_paths: | |
if os.path.isfile(path): | |
state_dicts.append(torch.load(path, map_location="cpu")["state_dict"]) | |
else: | |
print(f"Checkpoint file {path} not found.") | |
continue | |
# Check if we have any state_dicts to average | |
if not state_dicts: | |
raise RuntimeError("No checkpoints found for averaging.") | |
# Average or sum weights | |
avg_state_dict = OrderedDict() | |
for key in state_dicts[0].keys(): | |
tensors = [state_dict[key].cpu() for state_dict in state_dicts] | |
# Check the type of the tensor | |
if str(tensors[0].dtype).startswith("torch.int"): | |
# Perform sum for integer tensors | |
summed_tensor = sum(tensors) | |
avg_state_dict[key] = summed_tensor | |
else: | |
# Perform average for other types of tensors | |
stacked_tensors = torch.stack(tensors) | |
avg_state_dict[key] = torch.mean(stacked_tensors, dim=0) | |
torch.save( | |
{"state_dict": avg_state_dict}, | |
os.path.join(output_dir, f"model.pt.avg{last_n}"), | |
) | |
return avg_state_dict | |