Spaces:
Running
Running
#!/usr/bin/env python3 | |
"""Initialize modules for espnet2 neural networks.""" | |
import math | |
import torch | |
def initialize(model: torch.nn.Module, init: str): | |
"""Initialize weights of a neural network module. | |
Parameters are initialized using the given method or distribution. | |
Custom initialization routines can be implemented into submodules | |
as function `espnet_initialization_fn` within the custom module. | |
Args: | |
model: Target. | |
init: Method of initialization. | |
""" | |
# weight init | |
for p in model.parameters(): | |
if p.dim() > 1: | |
if init == "xavier_uniform": | |
torch.nn.init.xavier_uniform_(p.data) | |
elif init == "xavier_normal": | |
torch.nn.init.xavier_normal_(p.data) | |
elif init == "kaiming_uniform": | |
torch.nn.init.kaiming_uniform_(p.data, nonlinearity="relu") | |
elif init == "kaiming_normal": | |
torch.nn.init.kaiming_normal_(p.data, nonlinearity="relu") | |
else: | |
raise ValueError("Unknown initialization: " + init) | |
# bias init | |
for p in model.parameters(): | |
if p.dim() == 1: | |
p.data.zero_() | |
# reset some modules with default init | |
for m in model.modules(): | |
if isinstance(m, (torch.nn.Embedding, torch.nn.LayerNorm, torch.nn.GroupNorm)): | |
m.reset_parameters() | |
if hasattr(m, "espnet_initialization_fn"): | |
m.espnet_initialization_fn() | |
# TODO(xkc): Hacking s3prl_frontend and wav2vec2encoder initialization | |
if getattr(model, "encoder", None) and getattr( | |
model.encoder, "reload_pretrained_parameters", None | |
): | |
model.encoder.reload_pretrained_parameters() | |
if getattr(model, "frontend", None) and getattr( | |
model.frontend, "reload_pretrained_parameters", None | |
): | |
model.frontend.reload_pretrained_parameters() | |