martin
initial
67c46fd
raw
history blame
5.49 kB
import os
import io
import torch
import numpy as np
import torchaudio
from torch.nn.utils.rnn import pad_sequence
try:
from funasr_detach.download.file import download_from_url
except:
print("urllib is not installed, if you infer from url, please install it first.")
def load_audio_text_image_video(
data_or_path_or_list,
fs: int = 16000,
audio_fs: int = 16000,
data_type="sound",
tokenizer=None,
**kwargs
):
if isinstance(data_or_path_or_list, (list, tuple)):
if data_type is not None and isinstance(data_type, (list, tuple)):
data_types = [data_type] * len(data_or_path_or_list)
data_or_path_or_list_ret = [[] for d in data_type]
for i, (data_type_i, data_or_path_or_list_i) in enumerate(
zip(data_types, data_or_path_or_list)
):
for j, (data_type_j, data_or_path_or_list_j) in enumerate(
zip(data_type_i, data_or_path_or_list_i)
):
data_or_path_or_list_j = load_audio_text_image_video(
data_or_path_or_list_j,
fs=fs,
audio_fs=audio_fs,
data_type=data_type_j,
tokenizer=tokenizer,
**kwargs
)
data_or_path_or_list_ret[j].append(data_or_path_or_list_j)
return data_or_path_or_list_ret
else:
return [
load_audio_text_image_video(
audio, fs=fs, audio_fs=audio_fs, data_type=data_type, **kwargs
)
for audio in data_or_path_or_list
]
if isinstance(data_or_path_or_list, str) and data_or_path_or_list.startswith(
"http"
): # download url to local file
data_or_path_or_list = download_from_url(data_or_path_or_list)
if isinstance(data_or_path_or_list, io.BytesIO):
data_or_path_or_list, audio_fs = torchaudio.load(data_or_path_or_list)
if kwargs.get("reduce_channels", True):
data_or_path_or_list = data_or_path_or_list.mean(0)
elif isinstance(data_or_path_or_list, str) and os.path.exists(
data_or_path_or_list
): # local file
if data_type is None or data_type == "sound":
data_or_path_or_list, audio_fs = torchaudio.load(data_or_path_or_list)
if kwargs.get("reduce_channels", True):
data_or_path_or_list = data_or_path_or_list.mean(0)
elif data_type == "text" and tokenizer is not None:
data_or_path_or_list = tokenizer.encode(data_or_path_or_list)
elif data_type == "image": # undo
pass
elif data_type == "video": # undo
pass
# if data_in is a file or url, set is_final=True
if "cache" in kwargs:
kwargs["cache"]["is_final"] = True
kwargs["cache"]["is_streaming_input"] = False
elif (
isinstance(data_or_path_or_list, str)
and data_type == "text"
and tokenizer is not None
):
data_or_path_or_list = tokenizer.encode(data_or_path_or_list)
elif isinstance(data_or_path_or_list, np.ndarray): # audio sample point
data_or_path_or_list = torch.from_numpy(
data_or_path_or_list
).squeeze() # [n_samples,]
else:
pass
# print(f"unsupport data type: {data_or_path_or_list}, return raw data")
if audio_fs != fs and data_type != "text":
resampler = torchaudio.transforms.Resample(audio_fs, fs)
data_or_path_or_list = resampler(data_or_path_or_list[None, :])[0, :]
return data_or_path_or_list
def load_bytes(input):
middle_data = np.frombuffer(input, dtype=np.int16)
middle_data = np.asarray(middle_data)
if middle_data.dtype.kind not in "iu":
raise TypeError("'middle_data' must be an array of integers")
dtype = np.dtype("float32")
if dtype.kind != "f":
raise TypeError("'dtype' must be a floating point type")
i = np.iinfo(middle_data.dtype)
abs_max = 2 ** (i.bits - 1)
offset = i.min + abs_max
array = np.frombuffer(
(middle_data.astype(dtype) - offset) / abs_max, dtype=np.float32
)
return array
def extract_fbank(
data, data_len=None, data_type: str = "sound", frontend=None, **kwargs
):
# import pdb;
# pdb.set_trace()
if isinstance(data, np.ndarray):
data = torch.from_numpy(data)
if len(data.shape) < 2:
data = data[None, :] # data: [batch, N]
data_len = [data.shape[1]] if data_len is None else data_len
elif isinstance(data, torch.Tensor):
if len(data.shape) < 2:
data = data[None, :] # data: [batch, N]
data_len = [data.shape[1]] if data_len is None else data_len
elif isinstance(data, (list, tuple)):
data_list, data_len = [], []
for data_i in data:
if isinstance(data_i, np.ndarray):
data_i = torch.from_numpy(data_i)
data_list.append(data_i)
data_len.append(data_i.shape[0])
data = pad_sequence(data_list, batch_first=True) # data: [batch, N]
# import pdb;
# pdb.set_trace()
# if data_type == "sound":
data, data_len = frontend(data, data_len, **kwargs)
if isinstance(data_len, (list, tuple)):
data_len = torch.tensor([data_len])
return data.to(torch.float32), data_len.to(torch.int32)