Spaces:
Running
Running
import io | |
from collections import OrderedDict | |
import numpy as np | |
def statistic_model_parameters(model, prefix=None): | |
var_dict = model.state_dict() | |
numel = 0 | |
for i, key in enumerate( | |
sorted(list([x for x in var_dict.keys() if "num_batches_tracked" not in x])) | |
): | |
if prefix is None or key.startswith(prefix): | |
numel += var_dict[key].numel() | |
return numel | |
def int2vec(x, vec_dim=8, dtype=np.int32): | |
b = ("{:0" + str(vec_dim) + "b}").format(x) | |
# little-endian order: lower bit first | |
return (np.array(list(b)[::-1]) == "1").astype(dtype) | |
def seq2arr(seq, vec_dim=8): | |
return np.row_stack([int2vec(int(x), vec_dim) for x in seq]) | |
def load_scp_as_dict(scp_path, value_type="str", kv_sep=" "): | |
with io.open(scp_path, "r", encoding="utf-8") as f: | |
ret_dict = OrderedDict() | |
for one_line in f.readlines(): | |
one_line = one_line.strip() | |
pos = one_line.find(kv_sep) | |
key, value = one_line[:pos], one_line[pos + 1 :] | |
if value_type == "list": | |
value = value.split(" ") | |
ret_dict[key] = value | |
return ret_dict | |
def load_scp_as_list(scp_path, value_type="str", kv_sep=" "): | |
with io.open(scp_path, "r", encoding="utf8") as f: | |
ret_dict = [] | |
for one_line in f.readlines(): | |
one_line = one_line.strip() | |
pos = one_line.find(kv_sep) | |
key, value = one_line[:pos], one_line[pos + 1 :] | |
if value_type == "list": | |
value = value.split(" ") | |
ret_dict.append((key, value)) | |
return ret_dict | |