Step-Audio / funasr_detach /utils /speaker_utils.py
martin
initial
67c46fd
raw
history blame
6.5 kB
# Copyright (c) Alibaba, Inc. and its affiliates.
"""Some implementations are adapted from https://github.com/yuyq96/D-TDNN"""
import io
from typing import Union
import librosa as sf
import numpy as np
import torch
import torch.nn.functional as F
import torchaudio.compliance.kaldi as Kaldi
from torch import nn
from funasr_detach.utils.modelscope_file import File
def check_audio_list(audio: list):
audio_dur = 0
for i in range(len(audio)):
seg = audio[i]
assert seg[1] >= seg[0], "modelscope error: Wrong time stamps."
assert isinstance(seg[2], np.ndarray), "modelscope error: Wrong data type."
assert (
int(seg[1] * 16000) - int(seg[0] * 16000) == seg[2].shape[0]
), "modelscope error: audio data in list is inconsistent with time length."
if i > 0:
assert seg[0] >= audio[i - 1][1], "modelscope error: Wrong time stamps."
audio_dur += seg[1] - seg[0]
return audio_dur
# assert audio_dur > 5, 'modelscope error: The effective audio duration is too short.'
def sv_preprocess(inputs: Union[np.ndarray, list]):
output = []
for i in range(len(inputs)):
if isinstance(inputs[i], str):
file_bytes = File.read(inputs[i])
data, fs = sf.load(io.BytesIO(file_bytes), dtype="float32")
if len(data.shape) == 2:
data = data[:, 0]
data = torch.from_numpy(data).unsqueeze(0)
data = data.squeeze(0)
elif isinstance(inputs[i], np.ndarray):
assert (
len(inputs[i].shape) == 1
), "modelscope error: Input array should be [N, T]"
data = inputs[i]
if data.dtype in ["int16", "int32", "int64"]:
data = (data / (1 << 15)).astype("float32")
else:
data = data.astype("float32")
data = torch.from_numpy(data)
else:
raise ValueError(
"modelscope error: The input type is restricted to audio address and nump array."
)
output.append(data)
return output
def sv_chunk(vad_segments: list, fs=16000) -> list:
config = {
"seg_dur": 1.5,
"seg_shift": 0.75,
}
def seg_chunk(seg_data):
seg_st = seg_data[0]
data = seg_data[2]
chunk_len = int(config["seg_dur"] * fs)
chunk_shift = int(config["seg_shift"] * fs)
last_chunk_ed = 0
seg_res = []
for chunk_st in range(0, data.shape[0], chunk_shift):
chunk_ed = min(chunk_st + chunk_len, data.shape[0])
if chunk_ed <= last_chunk_ed:
break
last_chunk_ed = chunk_ed
chunk_st = max(0, chunk_ed - chunk_len)
chunk_data = data[chunk_st:chunk_ed]
if chunk_data.shape[0] < chunk_len:
chunk_data = np.pad(
chunk_data, (0, chunk_len - chunk_data.shape[0]), "constant"
)
seg_res.append([chunk_st / fs + seg_st, chunk_ed / fs + seg_st, chunk_data])
return seg_res
segs = []
for i, s in enumerate(vad_segments):
segs.extend(seg_chunk(s))
return segs
def extract_feature(audio):
features = []
for au in audio:
feature = Kaldi.fbank(au.unsqueeze(0), num_mel_bins=80)
feature = feature - feature.mean(dim=0, keepdim=True)
features.append(feature.unsqueeze(0))
features = torch.cat(features)
return features
def postprocess(
segments: list, vad_segments: list, labels: np.ndarray, embeddings: np.ndarray
) -> list:
assert len(segments) == len(labels)
labels = correct_labels(labels)
distribute_res = []
for i in range(len(segments)):
distribute_res.append([segments[i][0], segments[i][1], labels[i]])
# merge the same speakers chronologically
distribute_res = merge_seque(distribute_res)
# accquire speaker center
spk_embs = []
for i in range(labels.max() + 1):
spk_emb = embeddings[labels == i].mean(0)
spk_embs.append(spk_emb)
spk_embs = np.stack(spk_embs)
def is_overlapped(t1, t2):
if t1 > t2 + 1e-4:
return True
return False
# distribute the overlap region
for i in range(1, len(distribute_res)):
if is_overlapped(distribute_res[i - 1][1], distribute_res[i][0]):
p = (distribute_res[i][0] + distribute_res[i - 1][1]) / 2
distribute_res[i][0] = p
distribute_res[i - 1][1] = p
# smooth the result
distribute_res = smooth(distribute_res)
return distribute_res
def correct_labels(labels):
labels_id = 0
id2id = {}
new_labels = []
for i in labels:
if i not in id2id:
id2id[i] = labels_id
labels_id += 1
new_labels.append(id2id[i])
return np.array(new_labels)
def merge_seque(distribute_res):
res = [distribute_res[0]]
for i in range(1, len(distribute_res)):
if distribute_res[i][2] != res[-1][2] or distribute_res[i][0] > res[-1][1]:
res.append(distribute_res[i])
else:
res[-1][1] = distribute_res[i][1]
return res
def smooth(res, mindur=1):
# short segments are assigned to nearest speakers.
for i in range(len(res)):
res[i][0] = round(res[i][0], 2)
res[i][1] = round(res[i][1], 2)
if res[i][1] - res[i][0] < mindur:
if i == 0:
res[i][2] = res[i + 1][2]
elif i == len(res) - 1:
res[i][2] = res[i - 1][2]
elif res[i][0] - res[i - 1][1] <= res[i + 1][0] - res[i][1]:
res[i][2] = res[i - 1][2]
else:
res[i][2] = res[i + 1][2]
# merge the speakers
res = merge_seque(res)
return res
def distribute_spk(sentence_list, sd_time_list):
sd_sentence_list = []
for d in sentence_list:
sentence_start = d["ts_list"][0][0]
sentence_end = d["ts_list"][-1][1]
sentence_spk = 0
max_overlap = 0
for sd_time in sd_time_list:
spk_st, spk_ed, spk = sd_time
spk_st = spk_st * 1000
spk_ed = spk_ed * 1000
overlap = max(min(sentence_end, spk_ed) - max(sentence_start, spk_st), 0)
if overlap > max_overlap:
max_overlap = overlap
sentence_spk = spk
d["spk"] = sentence_spk
sd_sentence_list.append(d)
return sd_sentence_list