Spaces:
Running
Running
# Copyright (c) Alibaba, Inc. and its affiliates. | |
"""Some implementations are adapted from https://github.com/yuyq96/D-TDNN""" | |
import io | |
from typing import Union | |
import librosa as sf | |
import numpy as np | |
import torch | |
import torch.nn.functional as F | |
import torchaudio.compliance.kaldi as Kaldi | |
from torch import nn | |
from funasr_detach.utils.modelscope_file import File | |
def check_audio_list(audio: list): | |
audio_dur = 0 | |
for i in range(len(audio)): | |
seg = audio[i] | |
assert seg[1] >= seg[0], "modelscope error: Wrong time stamps." | |
assert isinstance(seg[2], np.ndarray), "modelscope error: Wrong data type." | |
assert ( | |
int(seg[1] * 16000) - int(seg[0] * 16000) == seg[2].shape[0] | |
), "modelscope error: audio data in list is inconsistent with time length." | |
if i > 0: | |
assert seg[0] >= audio[i - 1][1], "modelscope error: Wrong time stamps." | |
audio_dur += seg[1] - seg[0] | |
return audio_dur | |
# assert audio_dur > 5, 'modelscope error: The effective audio duration is too short.' | |
def sv_preprocess(inputs: Union[np.ndarray, list]): | |
output = [] | |
for i in range(len(inputs)): | |
if isinstance(inputs[i], str): | |
file_bytes = File.read(inputs[i]) | |
data, fs = sf.load(io.BytesIO(file_bytes), dtype="float32") | |
if len(data.shape) == 2: | |
data = data[:, 0] | |
data = torch.from_numpy(data).unsqueeze(0) | |
data = data.squeeze(0) | |
elif isinstance(inputs[i], np.ndarray): | |
assert ( | |
len(inputs[i].shape) == 1 | |
), "modelscope error: Input array should be [N, T]" | |
data = inputs[i] | |
if data.dtype in ["int16", "int32", "int64"]: | |
data = (data / (1 << 15)).astype("float32") | |
else: | |
data = data.astype("float32") | |
data = torch.from_numpy(data) | |
else: | |
raise ValueError( | |
"modelscope error: The input type is restricted to audio address and nump array." | |
) | |
output.append(data) | |
return output | |
def sv_chunk(vad_segments: list, fs=16000) -> list: | |
config = { | |
"seg_dur": 1.5, | |
"seg_shift": 0.75, | |
} | |
def seg_chunk(seg_data): | |
seg_st = seg_data[0] | |
data = seg_data[2] | |
chunk_len = int(config["seg_dur"] * fs) | |
chunk_shift = int(config["seg_shift"] * fs) | |
last_chunk_ed = 0 | |
seg_res = [] | |
for chunk_st in range(0, data.shape[0], chunk_shift): | |
chunk_ed = min(chunk_st + chunk_len, data.shape[0]) | |
if chunk_ed <= last_chunk_ed: | |
break | |
last_chunk_ed = chunk_ed | |
chunk_st = max(0, chunk_ed - chunk_len) | |
chunk_data = data[chunk_st:chunk_ed] | |
if chunk_data.shape[0] < chunk_len: | |
chunk_data = np.pad( | |
chunk_data, (0, chunk_len - chunk_data.shape[0]), "constant" | |
) | |
seg_res.append([chunk_st / fs + seg_st, chunk_ed / fs + seg_st, chunk_data]) | |
return seg_res | |
segs = [] | |
for i, s in enumerate(vad_segments): | |
segs.extend(seg_chunk(s)) | |
return segs | |
def extract_feature(audio): | |
features = [] | |
for au in audio: | |
feature = Kaldi.fbank(au.unsqueeze(0), num_mel_bins=80) | |
feature = feature - feature.mean(dim=0, keepdim=True) | |
features.append(feature.unsqueeze(0)) | |
features = torch.cat(features) | |
return features | |
def postprocess( | |
segments: list, vad_segments: list, labels: np.ndarray, embeddings: np.ndarray | |
) -> list: | |
assert len(segments) == len(labels) | |
labels = correct_labels(labels) | |
distribute_res = [] | |
for i in range(len(segments)): | |
distribute_res.append([segments[i][0], segments[i][1], labels[i]]) | |
# merge the same speakers chronologically | |
distribute_res = merge_seque(distribute_res) | |
# accquire speaker center | |
spk_embs = [] | |
for i in range(labels.max() + 1): | |
spk_emb = embeddings[labels == i].mean(0) | |
spk_embs.append(spk_emb) | |
spk_embs = np.stack(spk_embs) | |
def is_overlapped(t1, t2): | |
if t1 > t2 + 1e-4: | |
return True | |
return False | |
# distribute the overlap region | |
for i in range(1, len(distribute_res)): | |
if is_overlapped(distribute_res[i - 1][1], distribute_res[i][0]): | |
p = (distribute_res[i][0] + distribute_res[i - 1][1]) / 2 | |
distribute_res[i][0] = p | |
distribute_res[i - 1][1] = p | |
# smooth the result | |
distribute_res = smooth(distribute_res) | |
return distribute_res | |
def correct_labels(labels): | |
labels_id = 0 | |
id2id = {} | |
new_labels = [] | |
for i in labels: | |
if i not in id2id: | |
id2id[i] = labels_id | |
labels_id += 1 | |
new_labels.append(id2id[i]) | |
return np.array(new_labels) | |
def merge_seque(distribute_res): | |
res = [distribute_res[0]] | |
for i in range(1, len(distribute_res)): | |
if distribute_res[i][2] != res[-1][2] or distribute_res[i][0] > res[-1][1]: | |
res.append(distribute_res[i]) | |
else: | |
res[-1][1] = distribute_res[i][1] | |
return res | |
def smooth(res, mindur=1): | |
# short segments are assigned to nearest speakers. | |
for i in range(len(res)): | |
res[i][0] = round(res[i][0], 2) | |
res[i][1] = round(res[i][1], 2) | |
if res[i][1] - res[i][0] < mindur: | |
if i == 0: | |
res[i][2] = res[i + 1][2] | |
elif i == len(res) - 1: | |
res[i][2] = res[i - 1][2] | |
elif res[i][0] - res[i - 1][1] <= res[i + 1][0] - res[i][1]: | |
res[i][2] = res[i - 1][2] | |
else: | |
res[i][2] = res[i + 1][2] | |
# merge the speakers | |
res = merge_seque(res) | |
return res | |
def distribute_spk(sentence_list, sd_time_list): | |
sd_sentence_list = [] | |
for d in sentence_list: | |
sentence_start = d["ts_list"][0][0] | |
sentence_end = d["ts_list"][-1][1] | |
sentence_spk = 0 | |
max_overlap = 0 | |
for sd_time in sd_time_list: | |
spk_st, spk_ed, spk = sd_time | |
spk_st = spk_st * 1000 | |
spk_ed = spk_ed * 1000 | |
overlap = max(min(sentence_end, spk_ed) - max(sentence_start, spk_st), 0) | |
if overlap > max_overlap: | |
max_overlap = overlap | |
sentence_spk = spk | |
d["spk"] = sentence_spk | |
sd_sentence_list.append(d) | |
return sd_sentence_list | |