Spaces:
Running
Running
import torch | |
from torch.nn.utils.rnn import pad_sequence | |
def slice_padding_fbank(speech, speech_lengths, vad_segments): | |
speech_list = [] | |
speech_lengths_list = [] | |
for i, segment in enumerate(vad_segments): | |
bed_idx = int(segment[0][0] * 16) | |
end_idx = min(int(segment[0][1] * 16), speech_lengths[0]) | |
speech_i = speech[0, bed_idx:end_idx] | |
speech_lengths_i = end_idx - bed_idx | |
speech_list.append(speech_i) | |
speech_lengths_list.append(speech_lengths_i) | |
feats_pad = pad_sequence(speech_list, batch_first=True, padding_value=0.0) | |
speech_lengths_pad = torch.Tensor(speech_lengths_list).int() | |
return feats_pad, speech_lengths_pad | |
def slice_padding_audio_samples(speech, speech_lengths, vad_segments): | |
speech_list = [] | |
speech_lengths_list = [] | |
for i, segment in enumerate(vad_segments): | |
bed_idx = int(segment[0][0] * 16) | |
end_idx = min(int(segment[0][1] * 16), speech_lengths) | |
speech_i = speech[bed_idx:end_idx] | |
speech_lengths_i = end_idx - bed_idx | |
speech_list.append(speech_i) | |
speech_lengths_list.append(speech_lengths_i) | |
return speech_list, speech_lengths_list | |