Step-Audio / tokenizer.py
martin
modify name
f69f7c1
raw
history blame
7.08 kB
import io
import threading
import time
import os
import numpy as np
import torch
import torchaudio
import onnxruntime
import whisper
from funasr_detach import AutoModel
from utils import resample_audio, energy_norm_fn, trim_silence
class StepAudioTokenizer:
def __init__(
self,
encoder_path,
):
funasr_model_path = os.path.join(
encoder_path,
"dengcunqin/speech_paraformer-large_asr_nat-zh-cantonese-en-16k-vocab8501-online",
)
kms_path = os.path.join(encoder_path, "linguistic_tokenizer.npy")
cosy_tokenizer_path = os.path.join(encoder_path, "speech_tokenizer_v1.onnx")
self.funasr_model = AutoModel(model=funasr_model_path, model_revision="master")
self.kms = torch.tensor(np.load(kms_path))
providers = ["CUDAExecutionProvider"]
session_option = onnxruntime.SessionOptions()
session_option.graph_optimization_level = (
onnxruntime.GraphOptimizationLevel.ORT_ENABLE_ALL
)
session_option.intra_op_num_threads = 1
self.ort_session = onnxruntime.InferenceSession(
cosy_tokenizer_path, sess_options=session_option, providers=providers
)
self.chunk_size = [0, 4, 5]
self.encoder_chunk_look_back = 4
self.decoder_chunk_look_back = 1
self.vq02_sessions = {}
self.vq02_lock = threading.Lock()
self.vq06_lock = threading.Lock()
def __call__(self, audio, sr):
_, vq02, vq06 = self.wav2token(audio, sr, False)
text = self.merge_vq0206_to_token_str(vq02, vq06)
return text
def preprocess_wav(self, audio, sample_rate, enable_trim=True, energy_norm=True):
audio = resample_audio(audio, sample_rate, 16000)
if energy_norm:
audio = energy_norm_fn(audio)
if enable_trim:
audio = audio.cpu().numpy().squeeze(0)
audio = trim_silence(audio, 16000)
audio = torch.from_numpy(audio)
audio = audio.unsqueeze(0)
return audio
def wav2token(self, audio, sample_rate, enable_trim=True, energy_norm=True):
audio = self.preprocess_wav(
audio, sample_rate, enable_trim=enable_trim, energy_norm=energy_norm
)
vq02_ori = self.get_vq02_code(audio)
vq02 = [int(x) + 65536 for x in vq02_ori]
vq06_ori = self.get_vq06_code(audio)
vq06 = [int(x) + 65536 + 1024 for x in vq06_ori]
chunk = 1
chunk_nums = min(len(vq06) // (3 * chunk), len(vq02) // (2 * chunk))
speech_tokens = []
for idx in range(chunk_nums):
speech_tokens += vq02[idx * chunk * 2 : (idx + 1) * chunk * 2]
speech_tokens += vq06[idx * chunk * 3 : (idx + 1) * chunk * 3]
return speech_tokens, vq02_ori, vq06_ori
def get_vq02_code(self, audio, session_id=None, is_final=True):
_tmp_wav = io.BytesIO()
torchaudio.save(_tmp_wav, audio, 16000, format="wav")
_tmp_wav.seek(0)
with self.vq02_lock:
cache = {}
if session_id in self.vq02_sessions:
cache = self.vq02_sessions[session_id].get("cache", {})
res, new_cache = self.funasr_model.infer_encoder(
input=[_tmp_wav],
chunk_size=self.chunk_size,
encoder_chunk_look_back=self.encoder_chunk_look_back,
decoder_chunk_look_back=self.decoder_chunk_look_back,
device=0,
is_final=is_final,
cache=cache,
)
c_list = []
for j, res_ in enumerate(res):
feat = res_["enc_out"]
if len(feat) > 0:
c_list = self.dump_label([feat], self.kms)[0]
if is_final:
if session_id in self.vq02_sessions:
self.vq02_sessions.pop(session_id)
else:
if isinstance(session_id, str) and len(session_id) > 0:
self.vq02_sessions[session_id] = {
"cache": new_cache,
"update_time": time.time(),
}
return c_list
def get_vq06_code(self, audio):
def split_audio(audio, chunk_duration=480000):
start = 0
chunks = []
while start < len(audio):
end = min(start + chunk_duration, len(audio))
chunk = audio[start:end]
if len(chunk) < 480:
pass
else:
chunks.append(chunk)
start = end
return chunks
with self.vq06_lock:
audio = audio.squeeze(0)
chunk_audios = split_audio(audio, chunk_duration=30 * 16000) # ζœ€ε€§ζ”―ζŒ30s
speech_tokens = []
for chunk in chunk_audios:
duration = round(chunk.shape[0] / 16000, 2)
feat = whisper.log_mel_spectrogram(chunk, n_mels=128)
feat = feat.unsqueeze(0)
feat_len = np.array([feat.shape[2]], dtype=np.int32)
chunk_token = (
self.ort_session.run(
None,
{
self.ort_session.get_inputs()[0]
.name: feat.detach()
.cpu()
.numpy(),
self.ort_session.get_inputs()[1].name: feat_len,
},
)[0]
.flatten()
.tolist()
)
assert abs(len(chunk_token) - duration * 25) <= 2
speech_tokens += chunk_token
return speech_tokens
def kmean_cluster(self, samples, means):
dists = torch.cdist(samples, means)
indices = dists.argmin(dim=1).cpu().numpy()
return indices.tolist()
def dump_label(self, samples, mean):
dims = samples[0].shape[-1]
x_lens = [x.shape[1] for x in samples]
total_len = sum(x_lens)
x_sel = torch.FloatTensor(1, total_len, dims)
start_len = 0
for sample in samples:
sample_len = sample.shape[1]
end_len = start_len + sample_len
x_sel[:, start_len:end_len] = sample
start_len = end_len
dense_x = x_sel.squeeze(0)
indices = self.kmean_cluster(dense_x, mean)
indices_list = []
start_len = 0
for x_len in x_lens:
end_len = start_len + end_len
indices_list.append(indices[start_len:end_len])
return indices_list
def merge_vq0206_to_token_str(self, vq02, vq06):
_vq06 = [1024 + x for x in vq06]
result = []
i = 0
j = 0
while i < len(vq02) - 1 and j < len(_vq06) - 2:
sublist = vq02[i : i + 2] + _vq06[j : j + 3]
result.extend(sublist)
i += 2
j += 3
return "".join([f"<audio_{x}>" for x in result])