import torch import numpy as np import logging import torch.distributed as dist from funasr_detach.register import tables @tables.register("batch_sampler_classes", "DynamicBatchLocalShuffleSampler") class BatchSampler(torch.utils.data.BatchSampler): def __init__( self, dataset, batch_type: str = "example", batch_size: int = 100, buffer_size: int = 30, drop_last: bool = False, shuffle: bool = True, is_training: bool = True, **kwargs ): self.drop_last = drop_last self.pre_idx = -1 self.dataset = dataset self.total_samples = len(dataset) self.batch_type = batch_type self.batch_size = int(batch_size) self.buffer_size = buffer_size self.max_token_length = kwargs.get("max_token_length", 5000) self.shuffle_idx = np.arange(self.total_samples) self.shuffle = shuffle and is_training self.length_scale_source = kwargs.get("length_scale_source", 1.0) def __len__(self): return (self.total_samples - 1) // self.batch_size + 1 def set_epoch(self, epoch): np.random.seed(epoch) def __iter__(self): if self.shuffle: np.random.shuffle(self.shuffle_idx) batch = [] max_token = 0 num_sample = 0 iter_num = (self.total_samples - 1) // self.buffer_size + 1 # print("iter_num: ", iter_num) for iter in range(self.pre_idx + 1, iter_num): datalen_with_index = [] for i in range(self.buffer_size): idx = iter * self.buffer_size + i if idx >= self.total_samples: continue idx_map = self.shuffle_idx[idx] # prompt = self.dataset.indexed_dataset[idx_map]["prompt"] target_len = ( self.dataset.get_target_len(idx_map) if self.batch_type == "length" else 0.0 ) source_len = ( self.dataset.get_source_len(idx_map) / self.length_scale_source ) sample_len_cur = source_len + target_len datalen_with_index.append([idx, sample_len_cur]) datalen_with_index_sort = sorted(datalen_with_index, key=lambda x: x[1]) for item in datalen_with_index_sort: idx, sample_len_cur_raw = item if sample_len_cur_raw > self.max_token_length: continue max_token_cur = max(max_token, sample_len_cur_raw) max_token_padding = 1 + num_sample if self.batch_type != "example": max_token_padding *= max_token_cur if max_token_padding <= self.batch_size: batch.append(idx) max_token = max_token_cur num_sample += 1 else: yield batch batch = [idx] max_token = sample_len_cur_raw num_sample = 1 @tables.register("batch_sampler_classes", "BatchSampler") @tables.register("batch_sampler_classes", "RankFullLocalShuffleBatchSampler") class RankFullLocalShuffleBatchSampler(torch.utils.data.BatchSampler): def __init__( self, dataset, batch_type: str = "example", batch_size: int = 100, buffer_size: int = 30, drop_last: bool = True, shuffle: bool = True, is_training: bool = True, **kwargs ): self.drop_last = drop_last self.pre_idx = -1 self.dataset = dataset self.total_samples = len(dataset) self.batch_type = batch_type self.batch_size = int(batch_size) self.buffer_size = buffer_size self.max_token_length = kwargs.get("max_token_length", 1500) self.shuffle_idx = np.arange(self.total_samples) self.shuffle = shuffle and is_training self.length_scale_source = kwargs.get("length_scale_source", 1.0) try: rank = dist.get_rank() world_size = dist.get_world_size() except: rank = 0 world_size = 1 self.rank = rank self.world_size = world_size def __len__(self): return (self.total_samples - 1) // (self.batch_size * self.world_size) + 1 def set_epoch(self, epoch): np.random.seed(epoch) def __iter__(self): batch_size_total = self.batch_size * self.world_size if self.shuffle: np.random.shuffle(self.shuffle_idx) batch = [] max_token = 0 num_sample = 0 iter_num = (self.total_samples - 1) // self.buffer_size + 1 # print("iter_num: ", iter_num) for iter in range(self.pre_idx + 1, iter_num): # if iter == iter_num -1 and self.drop_last: # continue datalen_with_index = [] for i in range(self.buffer_size): idx = iter * self.buffer_size + i if idx >= self.total_samples: continue idx_map = self.shuffle_idx[idx] # prompt = self.dataset.indexed_dataset[idx_map]["prompt"] source_len = ( self.dataset.get_source_len(idx_map) / self.length_scale_source ) target_len = ( self.dataset.get_target_len(idx_map) if self.batch_type == "length" else 0.0 ) sample_len_cur = source_len + target_len datalen_with_index.append([idx, sample_len_cur]) datalen_with_index_sort = sorted(datalen_with_index, key=lambda x: x[1]) for item in datalen_with_index_sort: idx, sample_len_cur_raw = item if sample_len_cur_raw > self.max_token_length: continue max_token_cur = max(max_token, sample_len_cur_raw) max_token_padding = 1 + num_sample # if self.batch_type != 'example': # max_token_padding *= max_token_cur if max_token_padding <= batch_size_total: batch.append(idx) max_token = max_token_cur num_sample += 1 else: batch_rank = batch[ self.rank * self.batch_size : (self.rank + 1) * self.batch_size ] yield batch_rank batch = [idx] max_token = sample_len_cur_raw num_sample = 1 @tables.register("batch_sampler_classes", "RankFullLocalShuffleDynamicBatchSampler") class RankFullLocalShuffleDynamicBatchSampler(torch.utils.data.BatchSampler): def __init__( self, dataset, batch_type: str = "example", batch_size: int = 100, buffer_size: int = 30, drop_last: bool = True, shuffle: bool = True, is_training: bool = True, **kwargs ): self.drop_last = drop_last self.pre_idx = -1 self.dataset = dataset self.total_samples = len(dataset) self.batch_type = batch_type self.batch_size = int(batch_size) self.buffer_size = buffer_size self.max_token_length = kwargs.get("max_token_length", 1500) self.shuffle_idx = np.arange(self.total_samples) self.shuffle = shuffle and is_training self.length_scale_source = kwargs.get("length_scale_source", 1.0) try: rank = dist.get_rank() world_size = dist.get_world_size() except: rank = 0 world_size = 1 self.rank = rank self.world_size = world_size def __len__(self): return (self.total_samples - 1) // (self.batch_size * self.world_size) + 1 def set_epoch(self, epoch): np.random.seed(epoch) def __iter__(self): batch_size_total = self.batch_size * self.world_size if self.shuffle: np.random.shuffle(self.shuffle_idx) batch_list_all_rank = [] batch_list_cur = [] max_token = 0 num_sample = 0 iter_num = (self.total_samples - 1) // self.buffer_size + 1 # print("iter_num: ", iter_num) for iter in range(self.pre_idx + 1, iter_num): # if iter == iter_num - 1 and self.drop_last: # continue datalen_with_index = [] for i in range(self.buffer_size): idx = iter * self.buffer_size + i if idx >= self.total_samples: continue idx_map = self.shuffle_idx[idx] # prompt = self.dataset.indexed_dataset[idx_map]["prompt"] source_len = ( self.dataset.get_source_len(idx_map) / self.length_scale_source ) target_len = ( self.dataset.get_target_len(idx_map) if self.batch_type == "length" else 0.0 ) sample_len_cur = source_len + target_len datalen_with_index.append([idx, sample_len_cur]) datalen_with_index_sort = sorted(datalen_with_index, key=lambda x: x[1]) for ii, item in enumerate(datalen_with_index_sort): is_last_batch = iter == iter_num - 1 and ii == len( datalen_with_index_sort ) idx, sample_len_cur_raw = item if sample_len_cur_raw > self.max_token_length: continue max_token_cur = max(max_token, sample_len_cur_raw) max_token_padding = 1 + num_sample if self.batch_type != "example": max_token_padding *= max_token_cur if len(batch_list_all_rank) < self.world_size: if max_token_padding <= self.batch_size: batch_list_cur.append(idx) max_token = max_token_cur num_sample += 1 else: batch_list_all_rank.append(batch_list_cur) batch_list_cur = [] else: batch_rank = batch_list_all_rank[self.rank] yield batch_rank batch_list_all_rank = [idx] max_token = sample_len_cur_raw num_sample = 1