import numpy as np import torch import torch.nn.functional as F from torch import nn class EncoderDecoderAttractor(nn.Module): def __init__(self, n_units, encoder_dropout=0.1, decoder_dropout=0.1): super(EncoderDecoderAttractor, self).__init__() self.enc0_dropout = nn.Dropout(encoder_dropout) self.encoder = nn.LSTM( n_units, n_units, 1, batch_first=True, dropout=encoder_dropout ) self.dec0_dropout = nn.Dropout(decoder_dropout) self.decoder = nn.LSTM( n_units, n_units, 1, batch_first=True, dropout=decoder_dropout ) self.counter = nn.Linear(n_units, 1) self.n_units = n_units def forward_core(self, xs, zeros): ilens = torch.from_numpy(np.array([x.shape[0] for x in xs])).to(torch.int64) xs = [self.enc0_dropout(x) for x in xs] xs = nn.utils.rnn.pad_sequence(xs, batch_first=True, padding_value=-1) xs = nn.utils.rnn.pack_padded_sequence( xs, ilens, batch_first=True, enforce_sorted=False ) _, (hx, cx) = self.encoder(xs) zlens = torch.from_numpy(np.array([z.shape[0] for z in zeros])).to(torch.int64) max_zlen = torch.max(zlens).to(torch.int).item() zeros = [self.enc0_dropout(z) for z in zeros] zeros = nn.utils.rnn.pad_sequence(zeros, batch_first=True, padding_value=-1) zeros = nn.utils.rnn.pack_padded_sequence( zeros, zlens, batch_first=True, enforce_sorted=False ) attractors, (_, _) = self.decoder(zeros, (hx, cx)) attractors = nn.utils.rnn.pad_packed_sequence( attractors, batch_first=True, padding_value=-1, total_length=max_zlen )[0] attractors = [ att[: zlens[i].to(torch.int).item()] for i, att in enumerate(attractors) ] return attractors def forward(self, xs, n_speakers): zeros = [ torch.zeros(n_spk + 1, self.n_units).to(torch.float32).to(xs[0].device) for n_spk in n_speakers ] attractors = self.forward_core(xs, zeros) labels = torch.cat( [ torch.from_numpy(np.array([[1] * n_spk + [0]], np.float32)) for n_spk in n_speakers ], dim=1, ) labels = labels.to(xs[0].device) logit = torch.cat( [ self.counter(att).view(-1, n_spk + 1) for att, n_spk in zip(attractors, n_speakers) ], dim=1, ) loss = F.binary_cross_entropy(torch.sigmoid(logit), labels) attractors = [att[slice(0, att.shape[0] - 1)] for att in attractors] return loss, attractors def estimate(self, xs, max_n_speakers=15): zeros = [ torch.zeros(max_n_speakers, self.n_units).to(torch.float32).to(xs[0].device) for _ in xs ] attractors = self.forward_core(xs, zeros) probs = [torch.sigmoid(torch.flatten(self.counter(att))) for att in attractors] return attractors, probs