# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import torch import numpy as np import torch.nn as nn from enum import Enum, auto import torch.nn.functional as F from dataclasses import dataclass from funasr_detach.models.emotion2vec.fairseq_modules import ( LayerNorm, SamePad, TransposeLast, ) class Modality(Enum): AUDIO = auto() @dataclass class D2vDecoderConfig: decoder_dim: int = 384 decoder_groups: int = 16 decoder_kernel: int = 5 decoder_layers: int = 5 input_dropout: float = 0.1 add_positions_masked: bool = False add_positions_all: bool = False decoder_residual: bool = True projection_layers: int = 1 projection_ratio: float = 2.0 class FixedPositionalEncoder(nn.Module): def __init__(self, pos_embed): super().__init__() self.positions = pos_embed def forward(self, x, padding_mask): return self.positions class TextFeatPositionalEncoder(nn.Module): """ Original encoder expects (B, T) long input. This module wraps it to take local_encoder output which are (B, T, D) float tensors """ def __init__(self, pos_encoder): super().__init__() self.pos_encoder = pos_encoder def forward(self, x, padding_mask): # assume padded token embeddings are 0s # TODO: consider using padding_mask as input return self.pos_encoder(x[..., 0]) class BlockEncoder(nn.Module): def __init__(self, blocks, norm_layer, layer_norm_first, layerdrop, dropout): super().__init__() self.blocks = blocks self.norm = norm_layer self.layer_norm_first = layer_norm_first self.layerdrop = layerdrop self.dropout = nn.Dropout(dropout, inplace=True) def forward(self, x, padding_mask, alibi_bias, alibi_scale): if self.norm is not None and not self.layer_norm_first: x = self.norm(x) x = self.dropout(x) for i, blk in enumerate(self.blocks): if ( not self.training or self.layerdrop == 0 or (np.random.random() > self.layerdrop) ): ab = alibi_bias if ab is not None and alibi_scale is not None: scale = ( alibi_scale[i] if alibi_scale.size(0) > 1 else alibi_scale.squeeze(0) ) ab = ab * scale.type_as(ab) x, _ = blk(x, padding_mask, ab) if self.norm is not None and self.layer_norm_first: x = self.norm(x) return x class DecoderBase(nn.Module): decoder_cfg: D2vDecoderConfig def __init__(self, cfg: D2vDecoderConfig): super().__init__() self.decoder_cfg = cfg def reset_parameters(self): for mod in self.proj.modules(): if isinstance(mod, nn.Linear): mod.reset_parameters() def add_residual(self, x, residual, i, mask_info): if ( residual is None or not self.decoder_cfg.decoder_residual or residual.size(1) != x.size(1) ): return x ret = x + residual return ret class Decoder1d(DecoderBase): def __init__(self, cfg: D2vDecoderConfig, input_dim): super().__init__(cfg) def make_block(in_dim): block = [ nn.Conv1d( in_dim, cfg.decoder_dim, kernel_size=cfg.decoder_kernel, padding=cfg.decoder_kernel // 2, groups=cfg.decoder_groups, ), SamePad(cfg.decoder_kernel), TransposeLast(), LayerNorm(cfg.decoder_dim, elementwise_affine=False), TransposeLast(), nn.GELU(), ] return nn.Sequential(*block) self.blocks = nn.Sequential( *[ make_block(input_dim if i == 0 else cfg.decoder_dim) for i in range(cfg.decoder_layers) ] ) projs = [] curr_dim = cfg.decoder_dim for i in range(cfg.projection_layers - 1): next_dim = int(curr_dim * cfg.projection_ratio) if i == 0 else curr_dim projs.append(nn.Linear(curr_dim, next_dim)) projs.append(nn.GELU()) curr_dim = next_dim projs.append(nn.Linear(curr_dim, input_dim)) if len(projs) == 1: self.proj = projs[0] else: self.proj = nn.Sequential(*projs) def forward(self, x, mask_info): x = x.transpose(1, 2) residual = x for i, layer in enumerate(self.blocks): x = layer(x) x = self.add_residual(x, residual, i, mask_info) residual = x x = x.transpose(1, 2) x = self.proj(x) return x class AltBlock(nn.Module): def __init__( self, dim, num_heads, mlp_ratio=4.0, qkv_bias=False, qk_scale=None, drop=0.0, attn_drop=0.0, mlp_drop=0.0, post_mlp_drop=0.0, drop_path=0.0, act_layer=nn.GELU, norm_layer=nn.LayerNorm, layer_norm_first=True, ffn_targets=False, cosine_attention=False, ): super().__init__() self.layer_norm_first = layer_norm_first self.ffn_targets = ffn_targets from funasr_detach.models.emotion2vec.timm_modules import DropPath, Mlp self.norm1 = norm_layer(dim) self.attn = AltAttention( dim, num_heads=num_heads, qkv_bias=qkv_bias, qk_scale=qk_scale, attn_drop=attn_drop, proj_drop=drop, cosine_attention=cosine_attention, ) self.drop_path = DropPath(drop_path) if drop_path > 0.0 else nn.Identity() self.norm2 = norm_layer(dim) mlp_hidden_dim = int(dim * mlp_ratio) self.mlp = Mlp( in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=mlp_drop, ) self.post_mlp_dropout = nn.Dropout(post_mlp_drop, inplace=False) def forward(self, x, padding_mask=None, alibi_bias=None): if self.layer_norm_first: x = x + self.drop_path(self.attn(self.norm1(x), padding_mask, alibi_bias)) r = x = self.mlp(self.norm2(x)) t = x x = r + self.drop_path(self.post_mlp_dropout(x)) if not self.ffn_targets: t = x else: x = x + self.drop_path(self.attn(x, padding_mask, alibi_bias)) r = x = self.norm1(x) x = self.mlp(x) t = x x = self.norm2(r + self.drop_path(self.post_mlp_dropout(x))) if not self.ffn_targets: t = x return x, t class AltAttention(nn.Module): def __init__( self, dim, num_heads=8, qkv_bias=False, qk_scale=None, attn_drop=0.0, proj_drop=0.0, cosine_attention=False, ): super().__init__() self.num_heads = num_heads head_dim = dim // num_heads self.scale = qk_scale or head_dim**-0.5 self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias) self.attn_drop = nn.Dropout(attn_drop) self.proj = nn.Linear(dim, dim) self.proj_drop = nn.Dropout(proj_drop) self.cosine_attention = cosine_attention if cosine_attention: self.logit_scale = nn.Parameter( torch.log(10 * torch.ones((num_heads, 1, 1))), requires_grad=True ) def forward(self, x, padding_mask=None, alibi_bias=None): B, N, C = x.shape qkv = ( self.qkv(x) .reshape(B, N, 3, self.num_heads, C // self.num_heads) .permute(2, 0, 3, 1, 4) # qkv x B x H x L x D ) q, k, v = ( qkv[0], qkv[1], qkv[2], ) # make torchscript happy (cannot use tensor as tuple) dtype = q.dtype if self.cosine_attention: # cosine attention attn = F.normalize(q, dim=-1) @ F.normalize(k, dim=-1).transpose(-2, -1) logit_scale = torch.clamp( self.logit_scale, max=torch.log(torch.tensor(1.0 / 0.01)) ).exp() attn = attn * logit_scale else: q = q * self.scale attn = q @ k.transpose(-2, -1) if alibi_bias is not None: attn = attn.type_as(alibi_bias) attn[:, : alibi_bias.size(1)] += alibi_bias if padding_mask is not None and padding_mask.any(): attn = attn.masked_fill( padding_mask.unsqueeze(1).unsqueeze(2).to(torch.bool), float("-inf"), ) attn = attn.softmax(dim=-1, dtype=torch.float32).to(dtype=dtype) attn = self.attn_drop(attn) x = (attn @ v).transpose(1, 2) # x = x.reshape(B, N, C) x = self.proj(x) x = self.proj_drop(x) return x