# Copyright 2019 Shigeki Karita # Apache 2.0 (http://www.apache.org/licenses/LICENSE-2.0) """Transformer encoder definition.""" from typing import List from typing import Optional from typing import Tuple import torch from torch import nn import logging from funasr_detach.models.transformer.attention import MultiHeadedAttention from funasr_detach.models.transformer.embedding import PositionalEncoding from funasr_detach.models.transformer.layer_norm import LayerNorm from funasr_detach.models.transformer.utils.multi_layer_conv import Conv1dLinear from funasr_detach.models.transformer.utils.multi_layer_conv import MultiLayeredConv1d from funasr_detach.models.transformer.utils.nets_utils import make_pad_mask from funasr_detach.models.transformer.positionwise_feed_forward import ( PositionwiseFeedForward, # noqa: H301 ) from funasr_detach.models.transformer.utils.repeat import repeat from funasr_detach.models.transformer.utils.dynamic_conv import DynamicConvolution from funasr_detach.models.transformer.utils.dynamic_conv2d import DynamicConvolution2D from funasr_detach.models.transformer.utils.lightconv import LightweightConvolution from funasr_detach.models.transformer.utils.lightconv2d import LightweightConvolution2D from funasr_detach.models.transformer.utils.subsampling import Conv2dSubsampling from funasr_detach.models.transformer.utils.subsampling import Conv2dSubsampling2 from funasr_detach.models.transformer.utils.subsampling import Conv2dSubsampling6 from funasr_detach.models.transformer.utils.subsampling import Conv2dSubsampling8 from funasr_detach.models.transformer.utils.subsampling import TooShortUttError from funasr_detach.models.transformer.utils.subsampling import check_short_utt class EncoderLayer(nn.Module): """Encoder layer module. Args: size (int): Input dimension. self_attn (torch.nn.Module): Self-attention module instance. `MultiHeadedAttention` or `RelPositionMultiHeadedAttention` instance can be used as the argument. feed_forward (torch.nn.Module): Feed-forward module instance. `PositionwiseFeedForward`, `MultiLayeredConv1d`, or `Conv1dLinear` instance can be used as the argument. dropout_rate (float): Dropout rate. normalize_before (bool): Whether to use layer_norm before the first block. concat_after (bool): Whether to concat attention layer's input and output. if True, additional linear will be applied. i.e. x -> x + linear(concat(x, att(x))) if False, no additional linear will be applied. i.e. x -> x + att(x) stochastic_depth_rate (float): Proability to skip this layer. During training, the layer may skip residual computation and return input as-is with given probability. """ def __init__( self, size, self_attn, feed_forward, dropout_rate, normalize_before=True, concat_after=False, stochastic_depth_rate=0.0, ): """Construct an EncoderLayer object.""" super(EncoderLayer, self).__init__() self.self_attn = self_attn self.feed_forward = feed_forward self.norm1 = LayerNorm(size) self.norm2 = LayerNorm(size) self.dropout = nn.Dropout(dropout_rate) self.size = size self.normalize_before = normalize_before self.concat_after = concat_after if self.concat_after: self.concat_linear = nn.Linear(size + size, size) self.stochastic_depth_rate = stochastic_depth_rate def forward(self, x, mask, cache=None): """Compute encoded features. Args: x_input (torch.Tensor): Input tensor (#batch, time, size). mask (torch.Tensor): Mask tensor for the input (#batch, time). cache (torch.Tensor): Cache tensor of the input (#batch, time - 1, size). Returns: torch.Tensor: Output tensor (#batch, time, size). torch.Tensor: Mask tensor (#batch, time). """ skip_layer = False # with stochastic depth, residual connection `x + f(x)` becomes # `x <- x + 1 / (1 - p) * f(x)` at training time. stoch_layer_coeff = 1.0 if self.training and self.stochastic_depth_rate > 0: skip_layer = torch.rand(1).item() < self.stochastic_depth_rate stoch_layer_coeff = 1.0 / (1 - self.stochastic_depth_rate) if skip_layer: if cache is not None: x = torch.cat([cache, x], dim=1) return x, mask residual = x if self.normalize_before: x = self.norm1(x) if cache is None: x_q = x else: assert cache.shape == (x.shape[0], x.shape[1] - 1, self.size) x_q = x[:, -1:, :] residual = residual[:, -1:, :] mask = None if mask is None else mask[:, -1:, :] if self.concat_after: x_concat = torch.cat((x, self.self_attn(x_q, x, x, mask)), dim=-1) x = residual + stoch_layer_coeff * self.concat_linear(x_concat) else: x = residual + stoch_layer_coeff * self.dropout( self.self_attn(x_q, x, x, mask) ) if not self.normalize_before: x = self.norm1(x) residual = x if self.normalize_before: x = self.norm2(x) x = residual + stoch_layer_coeff * self.dropout(self.feed_forward(x)) if not self.normalize_before: x = self.norm2(x) if cache is not None: x = torch.cat([cache, x], dim=1) return x, mask class TransformerEncoder_lm(nn.Module): """Transformer encoder module. Args: idim (int): Input dimension. attention_dim (int): Dimension of attention. attention_heads (int): The number of heads of multi head attention. conv_wshare (int): The number of kernel of convolution. Only used in selfattention_layer_type == "lightconv*" or "dynamiconv*". conv_kernel_length (Union[int, str]): Kernel size str of convolution (e.g. 71_71_71_71_71_71). Only used in selfattention_layer_type == "lightconv*" or "dynamiconv*". conv_usebias (bool): Whether to use bias in convolution. Only used in selfattention_layer_type == "lightconv*" or "dynamiconv*". linear_units (int): The number of units of position-wise feed forward. num_blocks (int): The number of decoder blocks. dropout_rate (float): Dropout rate. positional_dropout_rate (float): Dropout rate after adding positional encoding. attention_dropout_rate (float): Dropout rate in attention. input_layer (Union[str, torch.nn.Module]): Input layer type. pos_enc_class (torch.nn.Module): Positional encoding module class. `PositionalEncoding `or `ScaledPositionalEncoding` normalize_before (bool): Whether to use layer_norm before the first block. concat_after (bool): Whether to concat attention layer's input and output. if True, additional linear will be applied. i.e. x -> x + linear(concat(x, att(x))) if False, no additional linear will be applied. i.e. x -> x + att(x) positionwise_layer_type (str): "linear", "conv1d", or "conv1d-linear". positionwise_conv_kernel_size (int): Kernel size of positionwise conv1d layer. selfattention_layer_type (str): Encoder attention layer type. padding_idx (int): Padding idx for input_layer=embed. stochastic_depth_rate (float): Maximum probability to skip the encoder layer. intermediate_layers (Union[List[int], None]): indices of intermediate CTC layer. indices start from 1. if not None, intermediate outputs are returned (which changes return type signature.) """ def __init__( self, idim, attention_dim=256, attention_heads=4, conv_wshare=4, conv_kernel_length="11", conv_usebias=False, linear_units=2048, num_blocks=6, dropout_rate=0.1, positional_dropout_rate=0.1, attention_dropout_rate=0.0, input_layer="conv2d", pos_enc_class=PositionalEncoding, normalize_before=True, concat_after=False, positionwise_layer_type="linear", positionwise_conv_kernel_size=1, selfattention_layer_type="selfattn", padding_idx=-1, stochastic_depth_rate=0.0, intermediate_layers=None, ctc_softmax=None, conditioning_layer_dim=None, ): """Construct an Encoder object.""" super().__init__() self.conv_subsampling_factor = 1 if input_layer == "linear": self.embed = torch.nn.Sequential( torch.nn.Linear(idim, attention_dim), torch.nn.LayerNorm(attention_dim), torch.nn.Dropout(dropout_rate), torch.nn.ReLU(), pos_enc_class(attention_dim, positional_dropout_rate), ) elif input_layer == "conv2d": self.embed = Conv2dSubsampling(idim, attention_dim, dropout_rate) self.conv_subsampling_factor = 4 elif input_layer == "conv2d-scaled-pos-enc": self.embed = Conv2dSubsampling( idim, attention_dim, dropout_rate, pos_enc_class(attention_dim, positional_dropout_rate), ) self.conv_subsampling_factor = 4 elif input_layer == "conv2d6": self.embed = Conv2dSubsampling6(idim, attention_dim, dropout_rate) self.conv_subsampling_factor = 6 elif input_layer == "conv2d8": self.embed = Conv2dSubsampling8(idim, attention_dim, dropout_rate) self.conv_subsampling_factor = 8 elif input_layer == "embed": self.embed = torch.nn.Sequential( torch.nn.Embedding(idim, attention_dim, padding_idx=padding_idx), pos_enc_class(attention_dim, positional_dropout_rate), ) elif isinstance(input_layer, torch.nn.Module): self.embed = torch.nn.Sequential( input_layer, pos_enc_class(attention_dim, positional_dropout_rate), ) elif input_layer is None: self.embed = torch.nn.Sequential( pos_enc_class(attention_dim, positional_dropout_rate) ) else: raise ValueError("unknown input_layer: " + input_layer) self.normalize_before = normalize_before positionwise_layer, positionwise_layer_args = self.get_positionwise_layer( positionwise_layer_type, attention_dim, linear_units, dropout_rate, positionwise_conv_kernel_size, ) if selfattention_layer_type in [ "selfattn", "rel_selfattn", "legacy_rel_selfattn", ]: logging.info("encoder self-attention layer type = self-attention") encoder_selfattn_layer = MultiHeadedAttention encoder_selfattn_layer_args = [ ( attention_heads, attention_dim, attention_dropout_rate, ) ] * num_blocks elif selfattention_layer_type == "lightconv": logging.info("encoder self-attention layer type = lightweight convolution") encoder_selfattn_layer = LightweightConvolution encoder_selfattn_layer_args = [ ( conv_wshare, attention_dim, attention_dropout_rate, int(conv_kernel_length.split("_")[lnum]), False, conv_usebias, ) for lnum in range(num_blocks) ] elif selfattention_layer_type == "lightconv2d": logging.info( "encoder self-attention layer " "type = lightweight convolution 2-dimensional" ) encoder_selfattn_layer = LightweightConvolution2D encoder_selfattn_layer_args = [ ( conv_wshare, attention_dim, attention_dropout_rate, int(conv_kernel_length.split("_")[lnum]), False, conv_usebias, ) for lnum in range(num_blocks) ] elif selfattention_layer_type == "dynamicconv": logging.info("encoder self-attention layer type = dynamic convolution") encoder_selfattn_layer = DynamicConvolution encoder_selfattn_layer_args = [ ( conv_wshare, attention_dim, attention_dropout_rate, int(conv_kernel_length.split("_")[lnum]), False, conv_usebias, ) for lnum in range(num_blocks) ] elif selfattention_layer_type == "dynamicconv2d": logging.info( "encoder self-attention layer type = dynamic convolution 2-dimensional" ) encoder_selfattn_layer = DynamicConvolution2D encoder_selfattn_layer_args = [ ( conv_wshare, attention_dim, attention_dropout_rate, int(conv_kernel_length.split("_")[lnum]), False, conv_usebias, ) for lnum in range(num_blocks) ] else: raise NotImplementedError(selfattention_layer_type) self.encoders = repeat( num_blocks, lambda lnum: EncoderLayer( attention_dim, encoder_selfattn_layer(*encoder_selfattn_layer_args[lnum]), positionwise_layer(*positionwise_layer_args), dropout_rate, normalize_before, concat_after, stochastic_depth_rate * float(1 + lnum) / num_blocks, ), ) if self.normalize_before: self.after_norm = LayerNorm(attention_dim) self.intermediate_layers = intermediate_layers self.use_conditioning = True if ctc_softmax is not None else False if self.use_conditioning: self.ctc_softmax = ctc_softmax self.conditioning_layer = torch.nn.Linear( conditioning_layer_dim, attention_dim ) def get_positionwise_layer( self, positionwise_layer_type="linear", attention_dim=256, linear_units=2048, dropout_rate=0.1, positionwise_conv_kernel_size=1, ): """Define positionwise layer.""" if positionwise_layer_type == "linear": positionwise_layer = PositionwiseFeedForward positionwise_layer_args = (attention_dim, linear_units, dropout_rate) elif positionwise_layer_type == "conv1d": positionwise_layer = MultiLayeredConv1d positionwise_layer_args = ( attention_dim, linear_units, positionwise_conv_kernel_size, dropout_rate, ) elif positionwise_layer_type == "conv1d-linear": positionwise_layer = Conv1dLinear positionwise_layer_args = ( attention_dim, linear_units, positionwise_conv_kernel_size, dropout_rate, ) else: raise NotImplementedError("Support only linear or conv1d.") return positionwise_layer, positionwise_layer_args def forward(self, xs, masks): """Encode input sequence. Args: xs (torch.Tensor): Input tensor (#batch, time, idim). masks (torch.Tensor): Mask tensor (#batch, time). Returns: torch.Tensor: Output tensor (#batch, time, attention_dim). torch.Tensor: Mask tensor (#batch, time). """ if isinstance( self.embed, (Conv2dSubsampling, Conv2dSubsampling6, Conv2dSubsampling8), ): xs, masks = self.embed(xs, masks) else: xs = self.embed(xs) if self.intermediate_layers is None: xs, masks = self.encoders(xs, masks) else: intermediate_outputs = [] for layer_idx, encoder_layer in enumerate(self.encoders): xs, masks = encoder_layer(xs, masks) if ( self.intermediate_layers is not None and layer_idx + 1 in self.intermediate_layers ): encoder_output = xs # intermediate branches also require normalization. if self.normalize_before: encoder_output = self.after_norm(encoder_output) intermediate_outputs.append(encoder_output) if self.use_conditioning: intermediate_result = self.ctc_softmax(encoder_output) xs = xs + self.conditioning_layer(intermediate_result) if self.normalize_before: xs = self.after_norm(xs) if self.intermediate_layers is not None: return xs, masks, intermediate_outputs return xs, masks def forward_one_step(self, xs, masks, cache=None): """Encode input frame. Args: xs (torch.Tensor): Input tensor. masks (torch.Tensor): Mask tensor. cache (List[torch.Tensor]): List of cache tensors. Returns: torch.Tensor: Output tensor. torch.Tensor: Mask tensor. List[torch.Tensor]: List of new cache tensors. """ if isinstance(self.embed, Conv2dSubsampling): xs, masks = self.embed(xs, masks) else: xs = self.embed(xs) if cache is None: cache = [None for _ in range(len(self.encoders))] new_cache = [] for c, e in zip(cache, self.encoders): xs, masks = e(xs, masks, cache=c) new_cache.append(xs) if self.normalize_before: xs = self.after_norm(xs) return xs, masks, new_cache