#!/usr/bin/env python3 # -*- coding: utf-8 -*- # Copyright 2019 Shigeki Karita # Apache 2.0 (http://www.apache.org/licenses/LICENSE-2.0) """Positional Encoding Module.""" import math import torch import torch.nn.functional as F from torch import einsum def _pre_hook( state_dict, prefix, local_metadata, strict, missing_keys, unexpected_keys, error_msgs, ): """Perform pre-hook in load_state_dict for backward compatibility. Note: We saved self.pe until v.0.5.2 but we have omitted it later. Therefore, we remove the item "pe" from `state_dict` for backward compatibility. """ k = prefix + "pe" if k in state_dict: state_dict.pop(k) class PositionalEncoding(torch.nn.Module): """Positional encoding. Args: d_model (int): Embedding dimension. dropout_rate (float): Dropout rate. max_len (int): Maximum input length. reverse (bool): Whether to reverse the input position. Only for the class LegacyRelPositionalEncoding. We remove it in the current class RelPositionalEncoding. """ def __init__(self, d_model, dropout_rate, max_len=5000, reverse=False): """Construct an PositionalEncoding object.""" super(PositionalEncoding, self).__init__() self.d_model = d_model self.reverse = reverse self.xscale = math.sqrt(self.d_model) self.dropout = torch.nn.Dropout(p=dropout_rate) self.pe = None self.extend_pe(torch.tensor(0.0).expand(1, max_len)) self._register_load_state_dict_pre_hook(_pre_hook) def extend_pe(self, x): """Reset the positional encodings.""" if self.pe is not None: if self.pe.size(1) >= x.size(1): if self.pe.dtype != x.dtype or self.pe.device != x.device: self.pe = self.pe.to(dtype=x.dtype, device=x.device) return pe = torch.zeros(x.size(1), self.d_model) if self.reverse: position = torch.arange( x.size(1) - 1, -1, -1.0, dtype=torch.float32 ).unsqueeze(1) else: position = torch.arange(0, x.size(1), dtype=torch.float32).unsqueeze(1) div_term = torch.exp( torch.arange(0, self.d_model, 2, dtype=torch.float32) * -(math.log(10000.0) / self.d_model) ) pe[:, 0::2] = torch.sin(position * div_term) pe[:, 1::2] = torch.cos(position * div_term) pe = pe.unsqueeze(0) self.pe = pe.to(device=x.device, dtype=x.dtype) def forward(self, x: torch.Tensor): """Add positional encoding. Args: x (torch.Tensor): Input tensor (batch, time, `*`). Returns: torch.Tensor: Encoded tensor (batch, time, `*`). """ self.extend_pe(x) x = x * self.xscale + self.pe[:, : x.size(1)] return self.dropout(x) class ScaledPositionalEncoding(PositionalEncoding): """Scaled positional encoding module. See Sec. 3.2 https://arxiv.org/abs/1809.08895 Args: d_model (int): Embedding dimension. dropout_rate (float): Dropout rate. max_len (int): Maximum input length. """ def __init__(self, d_model, dropout_rate, max_len=5000): """Initialize class.""" super().__init__(d_model=d_model, dropout_rate=dropout_rate, max_len=max_len) self.alpha = torch.nn.Parameter(torch.tensor(1.0)) def reset_parameters(self): """Reset parameters.""" self.alpha.data = torch.tensor(1.0) def forward(self, x): """Add positional encoding. Args: x (torch.Tensor): Input tensor (batch, time, `*`). Returns: torch.Tensor: Encoded tensor (batch, time, `*`). """ self.extend_pe(x) x = x + self.alpha * self.pe[:, : x.size(1)] return self.dropout(x) class LearnableFourierPosEnc(torch.nn.Module): """Learnable Fourier Features for Positional Encoding. See https://arxiv.org/pdf/2106.02795.pdf Args: d_model (int): Embedding dimension. dropout_rate (float): Dropout rate. max_len (int): Maximum input length. gamma (float): init parameter for the positional kernel variance see https://arxiv.org/pdf/2106.02795.pdf. apply_scaling (bool): Whether to scale the input before adding the pos encoding. hidden_dim (int): if not None, we modulate the pos encodings with an MLP whose hidden layer has hidden_dim neurons. """ def __init__( self, d_model, dropout_rate=0.0, max_len=5000, gamma=1.0, apply_scaling=False, hidden_dim=None, ): """Initialize class.""" super(LearnableFourierPosEnc, self).__init__() self.d_model = d_model if apply_scaling: self.xscale = math.sqrt(self.d_model) else: self.xscale = 1.0 self.dropout = torch.nn.Dropout(dropout_rate) self.max_len = max_len self.gamma = gamma if self.gamma is None: self.gamma = self.d_model // 2 assert ( d_model % 2 == 0 ), "d_model should be divisible by two in order to use this layer." self.w_r = torch.nn.Parameter(torch.empty(1, d_model // 2)) self._reset() # init the weights self.hidden_dim = hidden_dim if self.hidden_dim is not None: self.mlp = torch.nn.Sequential( torch.nn.Linear(d_model, hidden_dim), torch.nn.GELU(), torch.nn.Linear(hidden_dim, d_model), ) def _reset(self): self.w_r.data = torch.normal( 0, (1 / math.sqrt(self.gamma)), (1, self.d_model // 2) ) def extend_pe(self, x): """Reset the positional encodings.""" position_v = torch.arange(0, x.size(1), dtype=torch.float32).unsqueeze(1).to(x) cosine = torch.cos(torch.matmul(position_v, self.w_r)) sine = torch.sin(torch.matmul(position_v, self.w_r)) pos_enc = torch.cat((cosine, sine), -1) pos_enc /= math.sqrt(self.d_model) if self.hidden_dim is None: return pos_enc.unsqueeze(0) else: return self.mlp(pos_enc.unsqueeze(0)) def forward(self, x: torch.Tensor): """Add positional encoding. Args: x (torch.Tensor): Input tensor (batch, time, `*`). Returns: torch.Tensor: Encoded tensor (batch, time, `*`). """ pe = self.extend_pe(x) x = x * self.xscale + pe return self.dropout(x) class LegacyRelPositionalEncoding(PositionalEncoding): """Relative positional encoding module (old version). Details can be found in https://github.com/espnet/espnet/pull/2816. See : Appendix B in https://arxiv.org/abs/1901.02860 Args: d_model (int): Embedding dimension. dropout_rate (float): Dropout rate. max_len (int): Maximum input length. """ def __init__(self, d_model, dropout_rate, max_len=5000): """Initialize class.""" super().__init__( d_model=d_model, dropout_rate=dropout_rate, max_len=max_len, reverse=True, ) def forward(self, x): """Compute positional encoding. Args: x (torch.Tensor): Input tensor (batch, time, `*`). Returns: torch.Tensor: Encoded tensor (batch, time, `*`). torch.Tensor: Positional embedding tensor (1, time, `*`). """ self.extend_pe(x) x = x * self.xscale pos_emb = self.pe[:, : x.size(1)] return self.dropout(x), self.dropout(pos_emb) class RelPositionalEncoding(torch.nn.Module): """Relative positional encoding module (new implementation). Details can be found in https://github.com/espnet/espnet/pull/2816. See : Appendix B in https://arxiv.org/abs/1901.02860 Args: d_model (int): Embedding dimension. dropout_rate (float): Dropout rate. max_len (int): Maximum input length. """ def __init__(self, d_model, dropout_rate, max_len=5000): """Construct an PositionalEncoding object.""" super(RelPositionalEncoding, self).__init__() self.d_model = d_model self.xscale = math.sqrt(self.d_model) self.dropout = torch.nn.Dropout(p=dropout_rate) self.pe = None self.extend_pe(torch.tensor(0.0).expand(1, max_len)) def extend_pe(self, x): """Reset the positional encodings.""" if self.pe is not None: # self.pe contains both positive and negative parts # the length of self.pe is 2 * input_len - 1 if self.pe.size(1) >= x.size(1) * 2 - 1: if self.pe.dtype != x.dtype or self.pe.device != x.device: self.pe = self.pe.to(dtype=x.dtype, device=x.device) return # Suppose `i` means to the position of query vecotr and `j` means the # position of key vector. We use position relative positions when keys # are to the left (i>j) and negative relative positions otherwise (i= length: if self.pe.dtype != dtype or self.pe.device != device: self.pe = self.pe.to(dtype=dtype, device=device) return pe = torch.zeros(length, self.d_model) position = torch.arange(0, length, dtype=torch.float32).unsqueeze(1) div_term = torch.exp( torch.arange(0, self.d_model, 2, dtype=torch.float32) * -(math.log(10000.0) / self.d_model) ) pe[:, 0::2] = torch.sin(position * div_term) pe[:, 1::2] = torch.cos(position * div_term) pe = pe.unsqueeze(0) self.pe = pe.to(device=device, dtype=dtype) def forward(self, x: torch.Tensor, start_idx: int = 0): """Add positional encoding. Args: x (torch.Tensor): Input tensor (batch, time, `*`). Returns: torch.Tensor: Encoded tensor (batch, time, `*`). """ self.extend_pe(x.size(1) + start_idx, x.device, x.dtype) x = x * self.xscale + self.pe[:, start_idx : start_idx + x.size(1)] return self.dropout(x) class SinusoidalPositionEncoder(torch.nn.Module): """ """ def __int__(self, d_model=80, dropout_rate=0.1): pass def encode( self, positions: torch.Tensor = None, depth: int = None, dtype: torch.dtype = torch.float32, ): batch_size = positions.size(0) positions = positions.type(dtype) device = positions.device log_timescale_increment = torch.log( torch.tensor([10000], dtype=dtype, device=device) ) / (depth / 2 - 1) inv_timescales = torch.exp( torch.arange(depth / 2, device=device).type(dtype) * (-log_timescale_increment) ) inv_timescales = torch.reshape(inv_timescales, [batch_size, -1]) scaled_time = torch.reshape(positions, [1, -1, 1]) * torch.reshape( inv_timescales, [1, 1, -1] ) encoding = torch.cat([torch.sin(scaled_time), torch.cos(scaled_time)], dim=2) return encoding.type(dtype) def forward(self, x): batch_size, timesteps, input_dim = x.size() positions = torch.arange(1, timesteps + 1, device=x.device)[None, :] position_encoding = self.encode(positions, input_dim, x.dtype).to(x.device) return x + position_encoding class StreamSinusoidalPositionEncoder(torch.nn.Module): """ """ def __int__(self, d_model=80, dropout_rate=0.1): pass def encode( self, positions: torch.Tensor = None, depth: int = None, dtype: torch.dtype = torch.float32, ): batch_size = positions.size(0) positions = positions.type(dtype) log_timescale_increment = torch.log(torch.tensor([10000], dtype=dtype)) / ( depth / 2 - 1 ) inv_timescales = torch.exp( torch.arange(depth / 2).type(dtype) * (-log_timescale_increment) ) inv_timescales = torch.reshape(inv_timescales, [batch_size, -1]) scaled_time = torch.reshape(positions, [1, -1, 1]) * torch.reshape( inv_timescales, [1, 1, -1] ) encoding = torch.cat([torch.sin(scaled_time), torch.cos(scaled_time)], dim=2) return encoding.type(dtype) def forward(self, x, cache=None): batch_size, timesteps, input_dim = x.size() start_idx = 0 if cache is not None: start_idx = cache["start_idx"] cache["start_idx"] += timesteps positions = torch.arange(1, timesteps + start_idx + 1)[None, :] position_encoding = self.encode(positions, input_dim, x.dtype).to(x.device) return x + position_encoding[:, start_idx : start_idx + timesteps] class StreamingRelPositionalEncoding(torch.nn.Module): """Relative positional encoding. Args: size: Module size. max_len: Maximum input length. dropout_rate: Dropout rate. """ def __init__( self, size: int, dropout_rate: float = 0.0, max_len: int = 5000 ) -> None: """Construct a RelativePositionalEncoding object.""" super().__init__() self.size = size self.pe = None self.dropout = torch.nn.Dropout(p=dropout_rate) self.extend_pe(torch.tensor(0.0).expand(1, max_len)) self._register_load_state_dict_pre_hook(_pre_hook) def extend_pe(self, x: torch.Tensor, left_context: int = 0) -> None: """Reset positional encoding. Args: x: Input sequences. (B, T, ?) left_context: Number of frames in left context. """ time1 = x.size(1) + left_context if self.pe is not None: if self.pe.size(1) >= time1 * 2 - 1: if self.pe.dtype != x.dtype or self.pe.device != x.device: self.pe = self.pe.to(device=x.device, dtype=x.dtype) return pe_positive = torch.zeros(time1, self.size) pe_negative = torch.zeros(time1, self.size) position = torch.arange(0, time1, dtype=torch.float32).unsqueeze(1) div_term = torch.exp( torch.arange(0, self.size, 2, dtype=torch.float32) * -(math.log(10000.0) / self.size) ) pe_positive[:, 0::2] = torch.sin(position * div_term) pe_positive[:, 1::2] = torch.cos(position * div_term) pe_positive = torch.flip(pe_positive, [0]).unsqueeze(0) pe_negative[:, 0::2] = torch.sin(-1 * position * div_term) pe_negative[:, 1::2] = torch.cos(-1 * position * div_term) pe_negative = pe_negative[1:].unsqueeze(0) self.pe = torch.cat([pe_positive, pe_negative], dim=1).to( dtype=x.dtype, device=x.device ) def forward(self, x: torch.Tensor, left_context: int = 0) -> torch.Tensor: """Compute positional encoding. Args: x: Input sequences. (B, T, ?) left_context: Number of frames in left context. Returns: pos_enc: Positional embedding sequences. (B, 2 * (T - 1), ?) """ self.extend_pe(x, left_context=left_context) time1 = x.size(1) + left_context pos_enc = self.pe[ :, self.pe.size(1) // 2 - time1 + 1 : self.pe.size(1) // 2 + x.size(1) ] pos_enc = self.dropout(pos_enc) return pos_enc class ScaledSinuEmbedding(torch.nn.Module): def __init__(self, dim): super().__init__() self.scale = torch.nn.Parameter( torch.ones( 1, ) ) inv_freq = 1.0 / (10000 ** (torch.arange(0, dim, 2).float() / dim)) self.register_buffer("inv_freq", inv_freq) def forward(self, x): n, device = x.shape[1], x.device t = torch.arange(n, device=device).type_as(self.inv_freq) sinu = einsum("i , j -> i j", t, self.inv_freq) emb = torch.cat((sinu.sin(), sinu.cos()), dim=-1) return emb * self.scale