#!/usr/bin/env python3 # -*- coding: utf-8 -*- # Copyright 2019 Shigeki Karita # Apache 2.0 (http://www.apache.org/licenses/LICENSE-2.0) """Subsampling layer definition.""" import numpy as np import torch import torch.nn.functional as F from funasr_detach.models.transformer.embedding import PositionalEncoding import logging from funasr_detach.models.scama.utils import sequence_mask from funasr_detach.models.transformer.utils.nets_utils import ( sub_factor_to_params, pad_to_len, ) from typing import Optional, Tuple, Union import math class TooShortUttError(Exception): """Raised when the utt is too short for subsampling. Args: message (str): Message for error catch actual_size (int): the short size that cannot pass the subsampling limit (int): the limit size for subsampling """ def __init__(self, message, actual_size, limit): """Construct a TooShortUttError for error handler.""" super().__init__(message) self.actual_size = actual_size self.limit = limit def check_short_utt(ins, size): """Check if the utterance is too short for subsampling.""" if isinstance(ins, Conv2dSubsampling2) and size < 3: return True, 3 if isinstance(ins, Conv2dSubsampling) and size < 7: return True, 7 if isinstance(ins, Conv2dSubsampling6) and size < 11: return True, 11 if isinstance(ins, Conv2dSubsampling8) and size < 15: return True, 15 return False, -1 class Conv2dSubsampling(torch.nn.Module): """Convolutional 2D subsampling (to 1/4 length). Args: idim (int): Input dimension. odim (int): Output dimension. dropout_rate (float): Dropout rate. pos_enc (torch.nn.Module): Custom position encoding layer. """ def __init__(self, idim, odim, dropout_rate, pos_enc=None): """Construct an Conv2dSubsampling object.""" super(Conv2dSubsampling, self).__init__() self.conv = torch.nn.Sequential( torch.nn.Conv2d(1, odim, 3, 2), torch.nn.ReLU(), torch.nn.Conv2d(odim, odim, 3, 2), torch.nn.ReLU(), ) self.out = torch.nn.Sequential( torch.nn.Linear(odim * (((idim - 1) // 2 - 1) // 2), odim), pos_enc if pos_enc is not None else PositionalEncoding(odim, dropout_rate), ) def forward(self, x, x_mask): """Subsample x. Args: x (torch.Tensor): Input tensor (#batch, time, idim). x_mask (torch.Tensor): Input mask (#batch, 1, time). Returns: torch.Tensor: Subsampled tensor (#batch, time', odim), where time' = time // 4. torch.Tensor: Subsampled mask (#batch, 1, time'), where time' = time // 4. """ x = x.unsqueeze(1) # (b, c, t, f) x = self.conv(x) b, c, t, f = x.size() x = self.out(x.transpose(1, 2).contiguous().view(b, t, c * f)) if x_mask is None: return x, None return x, x_mask[:, :, :-2:2][:, :, :-2:2] def __getitem__(self, key): """Get item. When reset_parameters() is called, if use_scaled_pos_enc is used, return the positioning encoding. """ if key != -1: raise NotImplementedError("Support only `-1` (for `reset_parameters`).") return self.out[key] class Conv2dSubsamplingPad(torch.nn.Module): """Convolutional 2D subsampling (to 1/4 length). Args: idim (int): Input dimension. odim (int): Output dimension. dropout_rate (float): Dropout rate. pos_enc (torch.nn.Module): Custom position encoding layer. """ def __init__(self, idim, odim, dropout_rate, pos_enc=None): """Construct an Conv2dSubsampling object.""" super(Conv2dSubsamplingPad, self).__init__() self.conv = torch.nn.Sequential( torch.nn.Conv2d(1, odim, 3, 2, padding=(0, 0)), torch.nn.ReLU(), torch.nn.Conv2d(odim, odim, 3, 2, padding=(0, 0)), torch.nn.ReLU(), ) self.out = torch.nn.Sequential( torch.nn.Linear(odim * (((idim - 1) // 2 - 1) // 2), odim), pos_enc if pos_enc is not None else PositionalEncoding(odim, dropout_rate), ) self.pad_fn = torch.nn.ConstantPad1d((0, 4), 0.0) def forward(self, x, x_mask): """Subsample x. Args: x (torch.Tensor): Input tensor (#batch, time, idim). x_mask (torch.Tensor): Input mask (#batch, 1, time). Returns: torch.Tensor: Subsampled tensor (#batch, time', odim), where time' = time // 4. torch.Tensor: Subsampled mask (#batch, 1, time'), where time' = time // 4. """ x = x.transpose(1, 2) x = self.pad_fn(x) x = x.transpose(1, 2) x = x.unsqueeze(1) # (b, c, t, f) x = self.conv(x) b, c, t, f = x.size() x = self.out(x.transpose(1, 2).contiguous().view(b, t, c * f)) if x_mask is None: return x, None x_len = torch.sum(x_mask[:, 0, :], dim=-1) x_len = (x_len - 1) // 2 + 1 x_len = (x_len - 1) // 2 + 1 mask = sequence_mask(x_len, None, x_len.dtype, x[0].device) return x, mask[:, None, :] def __getitem__(self, key): """Get item. When reset_parameters() is called, if use_scaled_pos_enc is used, return the positioning encoding. """ if key != -1: raise NotImplementedError("Support only `-1` (for `reset_parameters`).") return self.out[key] class Conv2dSubsampling2(torch.nn.Module): """Convolutional 2D subsampling (to 1/2 length). Args: idim (int): Input dimension. odim (int): Output dimension. dropout_rate (float): Dropout rate. pos_enc (torch.nn.Module): Custom position encoding layer. """ def __init__(self, idim, odim, dropout_rate, pos_enc=None): """Construct an Conv2dSubsampling2 object.""" super(Conv2dSubsampling2, self).__init__() self.conv = torch.nn.Sequential( torch.nn.Conv2d(1, odim, 3, 2), torch.nn.ReLU(), torch.nn.Conv2d(odim, odim, 3, 1), torch.nn.ReLU(), ) self.out = torch.nn.Sequential( torch.nn.Linear(odim * (((idim - 1) // 2 - 2)), odim), pos_enc if pos_enc is not None else PositionalEncoding(odim, dropout_rate), ) def forward(self, x, x_mask): """Subsample x. Args: x (torch.Tensor): Input tensor (#batch, time, idim). x_mask (torch.Tensor): Input mask (#batch, 1, time). Returns: torch.Tensor: Subsampled tensor (#batch, time', odim), where time' = time // 2. torch.Tensor: Subsampled mask (#batch, 1, time'), where time' = time // 2. """ x = x.unsqueeze(1) # (b, c, t, f) x = self.conv(x) b, c, t, f = x.size() x = self.out(x.transpose(1, 2).contiguous().view(b, t, c * f)) if x_mask is None: return x, None return x, x_mask[:, :, :-2:2][:, :, :-2:1] def __getitem__(self, key): """Get item. When reset_parameters() is called, if use_scaled_pos_enc is used, return the positioning encoding. """ if key != -1: raise NotImplementedError("Support only `-1` (for `reset_parameters`).") return self.out[key] class Conv2dSubsampling6(torch.nn.Module): """Convolutional 2D subsampling (to 1/6 length). Args: idim (int): Input dimension. odim (int): Output dimension. dropout_rate (float): Dropout rate. pos_enc (torch.nn.Module): Custom position encoding layer. """ def __init__(self, idim, odim, dropout_rate, pos_enc=None): """Construct an Conv2dSubsampling6 object.""" super(Conv2dSubsampling6, self).__init__() self.conv = torch.nn.Sequential( torch.nn.Conv2d(1, odim, 3, 2), torch.nn.ReLU(), torch.nn.Conv2d(odim, odim, 5, 3), torch.nn.ReLU(), ) self.out = torch.nn.Sequential( torch.nn.Linear(odim * (((idim - 1) // 2 - 2) // 3), odim), pos_enc if pos_enc is not None else PositionalEncoding(odim, dropout_rate), ) def forward(self, x, x_mask): """Subsample x. Args: x (torch.Tensor): Input tensor (#batch, time, idim). x_mask (torch.Tensor): Input mask (#batch, 1, time). Returns: torch.Tensor: Subsampled tensor (#batch, time', odim), where time' = time // 6. torch.Tensor: Subsampled mask (#batch, 1, time'), where time' = time // 6. """ x = x.unsqueeze(1) # (b, c, t, f) x = self.conv(x) b, c, t, f = x.size() x = self.out(x.transpose(1, 2).contiguous().view(b, t, c * f)) if x_mask is None: return x, None return x, x_mask[:, :, :-2:2][:, :, :-4:3] class Conv2dSubsampling8(torch.nn.Module): """Convolutional 2D subsampling (to 1/8 length). Args: idim (int): Input dimension. odim (int): Output dimension. dropout_rate (float): Dropout rate. pos_enc (torch.nn.Module): Custom position encoding layer. """ def __init__(self, idim, odim, dropout_rate, pos_enc=None): """Construct an Conv2dSubsampling8 object.""" super(Conv2dSubsampling8, self).__init__() self.conv = torch.nn.Sequential( torch.nn.Conv2d(1, odim, 3, 2), torch.nn.ReLU(), torch.nn.Conv2d(odim, odim, 3, 2), torch.nn.ReLU(), torch.nn.Conv2d(odim, odim, 3, 2), torch.nn.ReLU(), ) self.out = torch.nn.Sequential( torch.nn.Linear(odim * ((((idim - 1) // 2 - 1) // 2 - 1) // 2), odim), pos_enc if pos_enc is not None else PositionalEncoding(odim, dropout_rate), ) def forward(self, x, x_mask): """Subsample x. Args: x (torch.Tensor): Input tensor (#batch, time, idim). x_mask (torch.Tensor): Input mask (#batch, 1, time). Returns: torch.Tensor: Subsampled tensor (#batch, time', odim), where time' = time // 8. torch.Tensor: Subsampled mask (#batch, 1, time'), where time' = time // 8. """ x = x.unsqueeze(1) # (b, c, t, f) x = self.conv(x) b, c, t, f = x.size() x = self.out(x.transpose(1, 2).contiguous().view(b, t, c * f)) if x_mask is None: return x, None return x, x_mask[:, :, :-2:2][:, :, :-2:2][:, :, :-2:2] class Conv1dSubsampling(torch.nn.Module): """Convolutional 1D subsampling (to 1/2 length). Args: idim (int): Input dimension. odim (int): Output dimension. dropout_rate (float): Dropout rate. pos_enc (torch.nn.Module): Custom position encoding layer. """ def __init__( self, idim, odim, kernel_size, stride, pad, tf2torch_tensor_name_prefix_torch: str = "stride_conv", tf2torch_tensor_name_prefix_tf: str = "seq2seq/proj_encoder/downsampling", ): super(Conv1dSubsampling, self).__init__() self.conv = torch.nn.Conv1d(idim, odim, kernel_size, stride) self.pad_fn = torch.nn.ConstantPad1d(pad, 0.0) self.stride = stride self.odim = odim self.tf2torch_tensor_name_prefix_torch = tf2torch_tensor_name_prefix_torch self.tf2torch_tensor_name_prefix_tf = tf2torch_tensor_name_prefix_tf def output_size(self) -> int: return self.odim def forward(self, x, x_len): """Subsample x.""" x = x.transpose(1, 2) # (b, d ,t) x = self.pad_fn(x) # x = F.relu(self.conv(x)) x = F.leaky_relu(self.conv(x), negative_slope=0.0) x = x.transpose(1, 2) # (b, t ,d) if x_len is None: return x, None x_len = (x_len - 1) // self.stride + 1 return x, x_len def gen_tf2torch_map_dict(self): tensor_name_prefix_torch = self.tf2torch_tensor_name_prefix_torch tensor_name_prefix_tf = self.tf2torch_tensor_name_prefix_tf map_dict_local = { ## predictor "{}.conv.weight".format(tensor_name_prefix_torch): { "name": "{}/conv1d/kernel".format(tensor_name_prefix_tf), "squeeze": None, "transpose": (2, 1, 0), }, # (256,256,3),(3,256,256) "{}.conv.bias".format(tensor_name_prefix_torch): { "name": "{}/conv1d/bias".format(tensor_name_prefix_tf), "squeeze": None, "transpose": None, }, # (256,),(256,) } return map_dict_local def convert_tf2torch( self, var_dict_tf, var_dict_torch, ): map_dict = self.gen_tf2torch_map_dict() var_dict_torch_update = dict() for name in sorted(var_dict_torch.keys(), reverse=False): names = name.split(".") if names[0] == self.tf2torch_tensor_name_prefix_torch: name_tf = map_dict[name]["name"] data_tf = var_dict_tf[name_tf] if map_dict[name]["squeeze"] is not None: data_tf = np.squeeze(data_tf, axis=map_dict[name]["squeeze"]) if map_dict[name]["transpose"] is not None: data_tf = np.transpose(data_tf, map_dict[name]["transpose"]) data_tf = torch.from_numpy(data_tf).type(torch.float32).to("cpu") var_dict_torch_update[name] = data_tf logging.info( "torch tensor: {}, {}, loading from tf tensor: {}, {}".format( name, data_tf.size(), name_tf, var_dict_tf[name_tf].shape ) ) return var_dict_torch_update class StreamingConvInput(torch.nn.Module): """Streaming ConvInput module definition. Args: input_size: Input size. conv_size: Convolution size. subsampling_factor: Subsampling factor. vgg_like: Whether to use a VGG-like network. output_size: Block output dimension. """ def __init__( self, input_size: int, conv_size: Union[int, Tuple], subsampling_factor: int = 4, vgg_like: bool = True, conv_kernel_size: int = 3, output_size: Optional[int] = None, ) -> None: """Construct a ConvInput object.""" super().__init__() if vgg_like: if subsampling_factor == 1: conv_size1, conv_size2 = conv_size self.conv = torch.nn.Sequential( torch.nn.Conv2d( 1, conv_size1, conv_kernel_size, stride=1, padding=(conv_kernel_size - 1) // 2, ), torch.nn.ReLU(), torch.nn.Conv2d( conv_size1, conv_size1, conv_kernel_size, stride=1, padding=(conv_kernel_size - 1) // 2, ), torch.nn.ReLU(), torch.nn.MaxPool2d((1, 2)), torch.nn.Conv2d( conv_size1, conv_size2, conv_kernel_size, stride=1, padding=(conv_kernel_size - 1) // 2, ), torch.nn.ReLU(), torch.nn.Conv2d( conv_size2, conv_size2, conv_kernel_size, stride=1, padding=(conv_kernel_size - 1) // 2, ), torch.nn.ReLU(), torch.nn.MaxPool2d((1, 2)), ) output_proj = conv_size2 * ((input_size // 2) // 2) self.subsampling_factor = 1 self.stride_1 = 1 self.create_new_mask = self.create_new_vgg_mask else: conv_size1, conv_size2 = conv_size kernel_1 = int(subsampling_factor / 2) self.conv = torch.nn.Sequential( torch.nn.Conv2d( 1, conv_size1, conv_kernel_size, stride=1, padding=(conv_kernel_size - 1) // 2, ), torch.nn.ReLU(), torch.nn.Conv2d( conv_size1, conv_size1, conv_kernel_size, stride=1, padding=(conv_kernel_size - 1) // 2, ), torch.nn.ReLU(), torch.nn.MaxPool2d((kernel_1, 2)), torch.nn.Conv2d( conv_size1, conv_size2, conv_kernel_size, stride=1, padding=(conv_kernel_size - 1) // 2, ), torch.nn.ReLU(), torch.nn.Conv2d( conv_size2, conv_size2, conv_kernel_size, stride=1, padding=(conv_kernel_size - 1) // 2, ), torch.nn.ReLU(), torch.nn.MaxPool2d((2, 2)), ) output_proj = conv_size2 * ((input_size // 2) // 2) self.subsampling_factor = subsampling_factor self.create_new_mask = self.create_new_vgg_mask self.stride_1 = kernel_1 else: if subsampling_factor == 1: self.conv = torch.nn.Sequential( torch.nn.Conv2d(1, conv_size, 3, [1, 2], [1, 0]), torch.nn.ReLU(), torch.nn.Conv2d( conv_size, conv_size, conv_kernel_size, [1, 2], [1, 0] ), torch.nn.ReLU(), ) output_proj = conv_size * (((input_size - 1) // 2 - 1) // 2) self.subsampling_factor = subsampling_factor self.kernel_2 = conv_kernel_size self.stride_2 = 1 self.create_new_mask = self.create_new_conv2d_mask else: kernel_2, stride_2, conv_2_output_size = sub_factor_to_params( subsampling_factor, input_size, ) self.conv = torch.nn.Sequential( torch.nn.Conv2d(1, conv_size, 3, 2, [1, 0]), torch.nn.ReLU(), torch.nn.Conv2d( conv_size, conv_size, kernel_2, stride_2, [(kernel_2 - 1) // 2, 0], ), torch.nn.ReLU(), ) output_proj = conv_size * conv_2_output_size self.subsampling_factor = subsampling_factor self.kernel_2 = kernel_2 self.stride_2 = stride_2 self.create_new_mask = self.create_new_conv2d_mask self.vgg_like = vgg_like self.min_frame_length = 7 if output_size is not None: self.output = torch.nn.Linear(output_proj, output_size) self.output_size = output_size else: self.output = None self.output_size = output_proj def forward( self, x: torch.Tensor, mask: Optional[torch.Tensor], chunk_size: Optional[torch.Tensor], ) -> Tuple[torch.Tensor, torch.Tensor]: """Encode input sequences. Args: x: ConvInput input sequences. (B, T, D_feats) mask: Mask of input sequences. (B, 1, T) Returns: x: ConvInput output sequences. (B, sub(T), D_out) mask: Mask of output sequences. (B, 1, sub(T)) """ if mask is not None: mask = self.create_new_mask(mask) olens = max(mask.eq(0).sum(1)) b, t, f = x.size() x = x.unsqueeze(1) # (b. 1. t. f) if chunk_size is not None: max_input_length = int( chunk_size * self.subsampling_factor * (math.ceil(float(t) / (chunk_size * self.subsampling_factor))) ) x = map(lambda inputs: pad_to_len(inputs, max_input_length, 1), x) x = list(x) x = torch.stack(x, dim=0) N_chunks = max_input_length // (chunk_size * self.subsampling_factor) x = x.view(b * N_chunks, 1, chunk_size * self.subsampling_factor, f) x = self.conv(x) _, c, _, f = x.size() if chunk_size is not None: x = x.transpose(1, 2).contiguous().view(b, -1, c * f)[:, :olens, :] else: x = x.transpose(1, 2).contiguous().view(b, -1, c * f) if self.output is not None: x = self.output(x) return x, mask[:, :olens][:, : x.size(1)] def create_new_vgg_mask(self, mask: torch.Tensor) -> torch.Tensor: """Create a new mask for VGG output sequences. Args: mask: Mask of input sequences. (B, T) Returns: mask: Mask of output sequences. (B, sub(T)) """ if self.subsampling_factor > 1: vgg1_t_len = mask.size(1) - (mask.size(1) % (self.subsampling_factor // 2)) mask = mask[:, :vgg1_t_len][:, :: self.subsampling_factor // 2] vgg2_t_len = mask.size(1) - (mask.size(1) % 2) mask = mask[:, :vgg2_t_len][:, ::2] else: mask = mask return mask def create_new_conv2d_mask(self, mask: torch.Tensor) -> torch.Tensor: """Create new conformer mask for Conv2d output sequences. Args: mask: Mask of input sequences. (B, T) Returns: mask: Mask of output sequences. (B, sub(T)) """ if self.subsampling_factor > 1: return mask[:, ::2][:, :: self.stride_2] else: return mask def get_size_before_subsampling(self, size: int) -> int: """Return the original size before subsampling for a given size. Args: size: Number of frames after subsampling. Returns: : Number of frames before subsampling. """ return size * self.subsampling_factor