import torch class ForwardAdaptor(torch.nn.Module): """Wrapped module to parallelize specified method torch.nn.DataParallel parallelizes only "forward()" and, maybe, the method having the other name can't be applied except for wrapping the module just like this class. Examples: >>> class A(torch.nn.Module): ... def foo(self, x): ... ... >>> model = A() >>> model = ForwardAdaptor(model, "foo") >>> model = torch.nn.DataParallel(model, device_ids=[0, 1]) >>> x = torch.randn(2, 10) >>> model(x) """ def __init__(self, module: torch.nn.Module, name: str): super().__init__() self.module = module self.name = name if not hasattr(module, name): raise ValueError(f"{module} doesn't have {name}") def forward(self, *args, **kwargs): func = getattr(self.module, self.name) return func(*args, **kwargs)