from typing import Any from typing import Dict from typing import Union from io import BytesIO import logging import torch import torch.nn import torch.optim def filter_state_dict( dst_state: Dict[str, Union[float, torch.Tensor]], src_state: Dict[str, Union[float, torch.Tensor]], ): """Filter name, size mismatch instances between dicts. Args: dst_state: reference state dict for filtering src_state: target state dict for filtering """ match_state = {} for key, value in src_state.items(): if key in dst_state and (dst_state[key].size() == src_state[key].size()): match_state[key] = value else: if key not in dst_state: logging.warning( f"Filter out {key} from pretrained dict" + " because of name not found in target dict" ) else: logging.warning( f"Filter out {key} from pretrained dict" + " because of size mismatch" + f"({dst_state[key].size()}-{src_state[key].size()})" ) return match_state def assigment_scope_map(dst_state: dict, src_state: dict, scope_map: str = None): """Compute the union of the current variables and checkpoint variables.""" import collections import re # current model variables name_to_variable = collections.OrderedDict() for name, var in dst_state.items(): name_to_variable[name] = var scope_map_num = 0 if scope_map is not None: scope_map = scope_map.split(",") scope_map_num = len(scope_map) // 2 for scope_map_idx in range(scope_map_num): scope_map_id = scope_map_idx * 2 logging.info( "assignment_map from scope {} to {}".format( scope_map[scope_map_id], scope_map[scope_map_id + 1] ) ) assignment_map = {} for name, var in src_state.items(): if scope_map: for scope_map_idx in range(scope_map_num): scope_map_id = scope_map_idx * 2 try: idx = name.index(scope_map[scope_map_id]) new_name = ( scope_map[scope_map_id + 1] + name[idx + len(scope_map[scope_map_id]) :] ) if new_name in name_to_variable: assignment_map[name] = var except: continue else: if name in name_to_variable: assignment_map[name] = var return assignment_map def load_pretrained_model( path: str, model: torch.nn.Module, ignore_init_mismatch: bool, map_location: str = "cpu", oss_bucket=None, scope_map=None, excludes=None, ): """Load a model state and set it to the model. Args: init_param: ::: Examples: """ obj = model dst_state = obj.state_dict() # import pdb; # pdb.set_trace() print(f"ckpt: {path}") if oss_bucket is None: src_state = torch.load(path, map_location=map_location) else: buffer = BytesIO(oss_bucket.get_object(path).read()) src_state = torch.load(buffer, map_location=map_location) if "state_dict" in src_state: src_state = src_state["state_dict"] for k in dst_state.keys(): if not k.startswith("module.") and "module." + k in src_state.keys(): k_ddp = "module." + k else: k_ddp = k if k_ddp in src_state: dst_state[k] = src_state[k_ddp] else: print(f"Miss key in ckpt: model: {k}, ckpt: {k_ddp}") flag = obj.load_state_dict(dst_state, strict=True) # print(flag) # def load_pretrained_model( # path: str, # model: torch.nn.Module, # ignore_init_mismatch: bool, # map_location: str = "cpu", # oss_bucket=None, # scope_map=None, # excludes=None, # ): # """Load a model state and set it to the model. # # Args: # init_param: ::: # # Examples: # # """ # # obj = model # # if oss_bucket is None: # src_state = torch.load(path, map_location=map_location) # else: # buffer = BytesIO(oss_bucket.get_object(path).read()) # src_state = torch.load(buffer, map_location=map_location) # src_state = src_state["model"] if "model" in src_state else src_state # # if excludes is not None: # for e in excludes.split(","): # src_state = {k: v for k, v in src_state.items() if not k.startswith(e)} # # dst_state = obj.state_dict() # src_state = assigment_scope_map(dst_state, src_state, scope_map) # # if ignore_init_mismatch: # src_state = filter_state_dict(dst_state, src_state) # # logging.debug("Loaded src_state keys: {}".format(src_state.keys())) # logging.debug("Loaded dst_state keys: {}".format(dst_state.keys())) # dst_state.update(src_state) # obj.load_state_dict(dst_state, strict=True)