import logging import os import shutil from multiprocessing import Pool import kaldiio import numpy as np import librosa import torch.distributed as dist import torchaudio def filter_wav_text(data_dir, dataset): wav_file = os.path.join(data_dir, dataset, "wav.scp") text_file = os.path.join(data_dir, dataset, "text") with open(wav_file) as f_wav, open(text_file) as f_text: wav_lines = f_wav.readlines() text_lines = f_text.readlines() os.rename(wav_file, "{}.bak".format(wav_file)) os.rename(text_file, "{}.bak".format(text_file)) wav_dict = {} for line in wav_lines: parts = line.strip().split() if len(parts) < 2: continue wav_dict[parts[0]] = parts[1] text_dict = {} for line in text_lines: parts = line.strip().split() if len(parts) < 2: continue text_dict[parts[0]] = " ".join(parts[1:]) filter_count = 0 with open(wav_file, "w") as f_wav, open(text_file, "w") as f_text: for sample_name, wav_path in wav_dict.items(): if sample_name in text_dict.keys(): f_wav.write(sample_name + " " + wav_path + "\n") f_text.write(sample_name + " " + text_dict[sample_name] + "\n") else: filter_count += 1 logging.info( "{}/{} samples in {} are filtered because of the mismatch between wav.scp and text".format( filter_count, len(wav_lines), dataset ) ) def wav2num_frame(wav_path, frontend_conf): try: waveform, sampling_rate = torchaudio.load(wav_path) except: waveform, sampling_rate = librosa.load(wav_path) waveform = np.expand_dims(waveform, axis=0) n_frames = (waveform.shape[1] * 1000.0) / ( sampling_rate * frontend_conf["frame_shift"] * frontend_conf["lfr_n"] ) feature_dim = frontend_conf["n_mels"] * frontend_conf["lfr_m"] return n_frames, feature_dim def calc_shape_core(root_path, args, idx): file_name = args.data_file_names.split(",")[0] data_name = args.dataset_conf.get("data_names", "speech,text").split(",")[0] scp_file = os.path.join(root_path, "{}.{}".format(file_name, idx)) shape_file = os.path.join(root_path, "{}_shape.{}".format(data_name, idx)) with open(scp_file) as f: lines = f.readlines() data_type = args.dataset_conf.get("data_types", "sound,text").split(",")[0] if data_type == "sound": frontend_conf = args.frontend_conf dataset_conf = args.dataset_conf length_min = ( dataset_conf.speech_length_min if hasattr(dataset_conf, "{}_length_min".format(data_name)) else -1 ) length_max = ( dataset_conf.speech_length_max if hasattr(dataset_conf, "{}_length_max".format(data_name)) else -1 ) with open(shape_file, "w") as f: for line in lines: sample_name, wav_path = line.strip().split() n_frames, feature_dim = wav2num_frame(wav_path, frontend_conf) write_flag = True if n_frames > 0 and length_min > 0: write_flag = n_frames >= length_min if n_frames > 0 and length_max > 0: write_flag = n_frames <= length_max if write_flag: f.write( "{} {},{}\n".format( sample_name, str(int(np.ceil(n_frames))), str(int(feature_dim)), ) ) f.flush() elif data_type == "kaldi_ark": dataset_conf = args.dataset_conf length_min = ( dataset_conf.speech_length_min if hasattr(dataset_conf, "{}_length_min".format(data_name)) else -1 ) length_max = ( dataset_conf.speech_length_max if hasattr(dataset_conf, "{}_length_max".format(data_name)) else -1 ) with open(shape_file, "w") as f: for line in lines: sample_name, feature_path = line.strip().split() feature = kaldiio.load_mat(feature_path) n_frames, feature_dim = feature.shape write_flag = True if n_frames > 0 and length_min > 0: write_flag = n_frames >= length_min if n_frames > 0 and length_max > 0: write_flag = n_frames <= length_max if write_flag: f.write( "{} {},{}\n".format( sample_name, str(int(np.ceil(n_frames))), str(int(feature_dim)), ) ) f.flush() elif data_type == "text": with open(shape_file, "w") as f: for line in lines: sample_name, text = line.strip().split(maxsplit=1) n_tokens = len(text.split()) f.write("{} {}\n".format(sample_name, str(int(np.ceil(n_tokens))))) f.flush() else: raise RuntimeError("Unsupported data_type: {}".format(data_type)) def calc_shape(args, dataset, nj=64): data_name = args.dataset_conf.get("data_names", "speech,text").split(",")[0] shape_path = os.path.join(args.data_dir, dataset, "{}_shape".format(data_name)) if os.path.exists(shape_path): logging.info("Shape file for small dataset already exists.") return split_shape_path = os.path.join( args.data_dir, dataset, "{}_shape_files".format(data_name) ) if os.path.exists(split_shape_path): shutil.rmtree(split_shape_path) os.mkdir(split_shape_path) # split file_name = args.data_file_names.split(",")[0] scp_file = os.path.join(args.data_dir, dataset, file_name) with open(scp_file) as f: lines = f.readlines() num_lines = len(lines) num_job_lines = num_lines // nj start = 0 for i in range(nj): end = start + num_job_lines file = os.path.join(split_shape_path, "{}.{}".format(file_name, str(i + 1))) with open(file, "w") as f: if i == nj - 1: f.writelines(lines[start:]) else: f.writelines(lines[start:end]) start = end p = Pool(nj) for i in range(nj): p.apply_async(calc_shape_core, args=(split_shape_path, args, str(i + 1))) logging.info("Generating shape files, please wait a few minutes...") p.close() p.join() # combine with open(shape_path, "w") as f: for i in range(nj): job_file = os.path.join( split_shape_path, "{}_shape.{}".format(data_name, str(i + 1)) ) with open(job_file) as job_f: lines = job_f.readlines() f.writelines(lines) logging.info("Generating shape files done.") def generate_data_list(args, data_dir, dataset, nj=64): data_names = args.dataset_conf.get("data_names", "speech,text").split(",") file_names = args.data_file_names.split(",") concat_data_name = "_".join(data_names) list_file = os.path.join(data_dir, dataset, "{}_data.list".format(concat_data_name)) if os.path.exists(list_file): logging.info("Data list for large dataset already exists.") return split_path = os.path.join(data_dir, dataset, "split") if os.path.exists(split_path): shutil.rmtree(split_path) os.mkdir(split_path) data_lines_list = [] for file_name in file_names: with open(os.path.join(data_dir, dataset, file_name)) as f: lines = f.readlines() data_lines_list.append(lines) num_lines = len(data_lines_list[0]) num_job_lines = num_lines // nj start = 0 for i in range(nj): end = start + num_job_lines split_path_nj = os.path.join(split_path, str(i + 1)) os.mkdir(split_path_nj) for file_id, file_name in enumerate(file_names): file = os.path.join(split_path_nj, file_name) with open(file, "w") as f: if i == nj - 1: f.writelines(data_lines_list[file_id][start:]) else: f.writelines(data_lines_list[file_id][start:end]) start = end with open(list_file, "w") as f_data: for i in range(nj): path = "" for file_name in file_names: path = path + " " + os.path.join(split_path, str(i + 1), file_name) f_data.write(path + "\n") def prepare_data(args, distributed_option): data_names = args.dataset_conf.get("data_names", "speech,text").split(",") data_types = args.dataset_conf.get("data_types", "sound,text").split(",") file_names = args.data_file_names.split(",") batch_type = args.dataset_conf["batch_conf"]["batch_type"] print( "data_names: {}, data_types: {}, file_names: {}".format( data_names, data_types, file_names ) ) assert len(data_names) == len(data_types) == len(file_names) if args.dataset_type == "small": args.train_shape_file = [ os.path.join( args.data_dir, args.train_set, "{}_shape".format(data_names[0]) ) ] args.valid_shape_file = [ os.path.join( args.data_dir, args.valid_set, "{}_shape".format(data_names[0]) ) ] ( args.train_data_path_and_name_and_type, args.valid_data_path_and_name_and_type, ) = ([], []) for file_name, data_name, data_type in zip(file_names, data_names, data_types): args.train_data_path_and_name_and_type.append( [ "{}/{}/{}".format(args.data_dir, args.train_set, file_name), data_name, data_type, ] ) args.valid_data_path_and_name_and_type.append( [ "{}/{}/{}".format(args.data_dir, args.valid_set, file_name), data_name, data_type, ] ) if os.path.exists(args.train_shape_file[0]): assert os.path.exists(args.valid_shape_file[0]) print("shape file for small dataset already exists.") return else: concat_data_name = "_".join(data_names) args.train_data_file = os.path.join( args.data_dir, args.train_set, "{}_data.list".format(concat_data_name) ) args.valid_data_file = os.path.join( args.data_dir, args.valid_set, "{}_data.list".format(concat_data_name) ) if os.path.exists(args.train_data_file): assert os.path.exists(args.valid_data_file) print("data list for large dataset already exists.") return distributed = distributed_option.distributed if not distributed or distributed_option.dist_rank == 0: if hasattr(args, "filter_input") and args.filter_input: filter_wav_text(args.data_dir, args.train_set) filter_wav_text(args.data_dir, args.valid_set) if args.dataset_type == "small" and batch_type != "unsorted": calc_shape(args, args.train_set) calc_shape(args, args.valid_set) if args.dataset_type == "large": generate_data_list(args, args.data_dir, args.train_set) generate_data_list(args, args.data_dir, args.valid_set) if distributed: dist.barrier()