import torch import codecs import logging import argparse import numpy as np # import edit_distance from itertools import zip_longest def cif_wo_hidden(alphas, threshold): batch_size, len_time = alphas.size() # loop varss integrate = torch.zeros([batch_size], device=alphas.device) # intermediate vars along time list_fires = [] for t in range(len_time): alpha = alphas[:, t] integrate += alpha list_fires.append(integrate) fire_place = integrate >= threshold integrate = torch.where( fire_place, integrate - torch.ones([batch_size], device=alphas.device) * threshold, integrate, ) fires = torch.stack(list_fires, 1) return fires def ts_prediction_lfr6_standard( us_alphas, us_peaks, char_list, vad_offset=0.0, force_time_shift=-1.5, sil_in_str=True, ): if not len(char_list): return "", [] START_END_THRESHOLD = 5 MAX_TOKEN_DURATION = 12 TIME_RATE = 10.0 * 6 / 1000 / 3 # 3 times upsampled if len(us_alphas.shape) == 2: alphas, peaks = us_alphas[0], us_peaks[0] # support inference batch_size=1 only else: alphas, peaks = us_alphas, us_peaks if char_list[-1] == "": char_list = char_list[:-1] fire_place = ( torch.where(peaks > 1.0 - 1e-4)[0].cpu().numpy() + force_time_shift ) # total offset if len(fire_place) != len(char_list) + 1: alphas /= alphas.sum() / (len(char_list) + 1) alphas = alphas.unsqueeze(0) peaks = cif_wo_hidden(alphas, threshold=1.0 - 1e-4)[0] fire_place = ( torch.where(peaks > 1.0 - 1e-4)[0].cpu().numpy() + force_time_shift ) # total offset num_frames = peaks.shape[0] timestamp_list = [] new_char_list = [] # for bicif model trained with large data, cif2 actually fires when a character starts # so treat the frames between two peaks as the duration of the former token fire_place = ( torch.where(peaks > 1.0 - 1e-4)[0].cpu().numpy() + force_time_shift ) # total offset # assert num_peak == len(char_list) + 1 # number of peaks is supposed to be number of tokens + 1 # begin silence if fire_place[0] > START_END_THRESHOLD: # char_list.insert(0, '') timestamp_list.append([0.0, fire_place[0] * TIME_RATE]) new_char_list.append("") # tokens timestamp for i in range(len(fire_place) - 1): new_char_list.append(char_list[i]) if ( MAX_TOKEN_DURATION < 0 or fire_place[i + 1] - fire_place[i] <= MAX_TOKEN_DURATION ): timestamp_list.append( [fire_place[i] * TIME_RATE, fire_place[i + 1] * TIME_RATE] ) else: # cut the duration to token and sil of the 0-weight frames last long _split = fire_place[i] + MAX_TOKEN_DURATION timestamp_list.append([fire_place[i] * TIME_RATE, _split * TIME_RATE]) timestamp_list.append([_split * TIME_RATE, fire_place[i + 1] * TIME_RATE]) new_char_list.append("") # tail token and end silence # new_char_list.append(char_list[-1]) if num_frames - fire_place[-1] > START_END_THRESHOLD: _end = (num_frames + fire_place[-1]) * 0.5 # _end = fire_place[-1] timestamp_list[-1][1] = _end * TIME_RATE timestamp_list.append([_end * TIME_RATE, num_frames * TIME_RATE]) new_char_list.append("") else: timestamp_list[-1][1] = num_frames * TIME_RATE if vad_offset: # add offset time in model with vad for i in range(len(timestamp_list)): timestamp_list[i][0] = timestamp_list[i][0] + vad_offset / 1000.0 timestamp_list[i][1] = timestamp_list[i][1] + vad_offset / 1000.0 res_txt = "" for char, timestamp in zip(new_char_list, timestamp_list): # if char != '': if not sil_in_str and char == "": continue res_txt += "{} {} {};".format( char, str(timestamp[0] + 0.0005)[:5], str(timestamp[1] + 0.0005)[:5] ) res = [] for char, timestamp in zip(new_char_list, timestamp_list): if char != "": res.append([int(timestamp[0] * 1000), int(timestamp[1] * 1000)]) return res_txt, res def timestamp_sentence( punc_id_list, timestamp_postprocessed, text_postprocessed, return_raw_text=False ): punc_list = [",", "。", "?", "、"] res = [] if text_postprocessed is None: return res if timestamp_postprocessed is None: return res if len(timestamp_postprocessed) == 0: return res if len(text_postprocessed) == 0: return res if punc_id_list is None or len(punc_id_list) == 0: res.append( { "text": text_postprocessed.split(), "start": timestamp_postprocessed[0][0], "end": timestamp_postprocessed[-1][1], "timestamp": timestamp_postprocessed, } ) return res if len(punc_id_list) != len(timestamp_postprocessed): logging.warning("length mismatch between punc and timestamp") sentence_text = "" sentence_text_seg = "" ts_list = [] sentence_start = timestamp_postprocessed[0][0] sentence_end = timestamp_postprocessed[0][1] texts = text_postprocessed.split() punc_stamp_text_list = list( zip_longest(punc_id_list, timestamp_postprocessed, texts, fillvalue=None) ) for punc_stamp_text in punc_stamp_text_list: punc_id, timestamp, text = punc_stamp_text # sentence_text += text if text is not None else '' if text is not None: if "a" <= text[0] <= "z" or "A" <= text[0] <= "Z": sentence_text += " " + text elif len(sentence_text) and ( "a" <= sentence_text[-1] <= "z" or "A" <= sentence_text[-1] <= "Z" ): sentence_text += " " + text else: sentence_text += text sentence_text_seg += text + " " ts_list.append(timestamp) punc_id = int(punc_id) if punc_id is not None else 1 sentence_end = timestamp[1] if timestamp is not None else sentence_end sentence_text_seg = ( sentence_text_seg[:-1] if sentence_text_seg[-1] == " " else sentence_text_seg ) if punc_id > 1: sentence_text += punc_list[punc_id - 2] if return_raw_text: res.append( { "text": sentence_text, "start": sentence_start, "end": sentence_end, "timestamp": ts_list, "raw_text": sentence_text_seg, } ) else: res.append( { "text": sentence_text, "start": sentence_start, "end": sentence_end, "timestamp": ts_list, } ) sentence_text = "" sentence_text_seg = "" ts_list = [] sentence_start = sentence_end return res