import torch from funasr_detach.register import tables from funasr_detach.utils.load_utils import extract_fbank, load_audio_text_image_video @tables.register("dataset_classes", "AudioDataset") class AudioDataset(torch.utils.data.Dataset): """ AudioDataset """ def __init__( self, path, index_ds: str = None, frontend=None, tokenizer=None, int_pad_value: int = -1, float_pad_value: float = 0.0, **kwargs ): super().__init__() index_ds_class = tables.index_ds_classes.get(index_ds) self.index_ds = index_ds_class(path, **kwargs) preprocessor_speech = kwargs.get("preprocessor_speech", None) if preprocessor_speech: preprocessor_speech_class = tables.preprocessor_classes.get( preprocessor_speech ) preprocessor_speech = preprocessor_speech_class( **kwargs.get("preprocessor_speech_conf") ) self.preprocessor_speech = preprocessor_speech preprocessor_text = kwargs.get("preprocessor_text", None) if preprocessor_text: preprocessor_text_class = tables.preprocessor_classes.get(preprocessor_text) preprocessor_text = preprocessor_text_class( **kwargs.get("preprocessor_text_conf") ) self.preprocessor_text = preprocessor_text self.frontend = frontend self.fs = 16000 if frontend is None else frontend.fs self.data_type = "sound" self.tokenizer = tokenizer self.int_pad_value = int_pad_value self.float_pad_value = float_pad_value def get_source_len(self, index): item = self.index_ds[index] return self.index_ds.get_source_len(item) def get_target_len(self, index): item = self.index_ds[index] return self.index_ds.get_target_len(item) def __len__(self): return len(self.index_ds) def __getitem__(self, index): item = self.index_ds[index] # import pdb; # pdb.set_trace() source = item["source"] data_src = load_audio_text_image_video(source, fs=self.fs) if self.preprocessor_speech: data_src = self.preprocessor_speech(data_src, fs=self.fs) speech, speech_lengths = extract_fbank( data_src, data_type=self.data_type, frontend=self.frontend, is_final=True ) # speech: [b, T, d] target = item["target"] if self.preprocessor_text: target = self.preprocessor_text(target) if self.tokenizer: ids = self.tokenizer.encode(target) text = torch.tensor(ids, dtype=torch.int64) else: ids = target text = ids ids_lengths = len(ids) text_lengths = torch.tensor([ids_lengths], dtype=torch.int32) return { "speech": speech[0, :, :], "speech_lengths": speech_lengths, "text": text, "text_lengths": text_lengths, } def collator(self, samples: list = None): outputs = {} for sample in samples: for key in sample.keys(): if key not in outputs: outputs[key] = [] outputs[key].append(sample[key]) for key, data_list in outputs.items(): if isinstance(data_list[0], torch.Tensor): if data_list[0].dtype == torch.int64: pad_value = self.int_pad_value else: pad_value = self.float_pad_value outputs[key] = torch.nn.utils.rnn.pad_sequence( data_list, batch_first=True, padding_value=pad_value ) return outputs