Spaces:
Sleeping
Sleeping
# Databricks notebook source | |
import streamlit as st | |
import os | |
import yaml | |
from langchain_nvidia_ai_endpoints import ChatNVIDIA | |
from dotenv import load_dotenv | |
import torch | |
from src.generator import answer_with_rag | |
from ragatouille import RAGPretrainedModel | |
from src.data_preparation import split_documents | |
from src.embeddings import init_embedding_model | |
from langchain_nvidia_ai_endpoints.embeddings import NVIDIAEmbeddings | |
from transformers import pipeline | |
from langchain_community.document_loaders import PyPDFLoader | |
from langchain_community.embeddings import HuggingFaceEmbeddings | |
from src.retriever import init_vectorDB_from_doc, retriever | |
from transformers import AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig | |
from langchain_community.vectorstores import FAISS | |
import faiss | |
def load_config(): | |
with open("./config.yml","r") as file_object: | |
try: | |
cfg=yaml.safe_load(file_object) | |
except yaml.YAMLError as exc: | |
logger.error(str(exc)) | |
raise | |
else: | |
return cfg | |
cfg= load_config() | |
#os.environ['NVIDIA_API_KEY']=st.secrets("NVIDIA_API_KEY") | |
#load_dotenv("./src/.env") | |
#HF_TOKEN=os.environ.get["HF_TOKEN"] | |
#st.write(os.environ["HF_TOKEN"] == st.secrets["HF_TOKEN"]) | |
EMBEDDING_MODEL_NAME=cfg['EMBEDDING_MODEL_NAME'] | |
DATA_FILE_PATH=cfg['DATA_FILE_PATH'] | |
READER_MODEL_NAME=cfg['READER_MODEL_NAME'] | |
RERANKER_MODEL_NAME=cfg['RERANKER_MODEL_NAME'] | |
VECTORDB_PATH=cfg['VECTORDB_PATH'] | |
def main(): | |
st.title("Un RAG pour interroger le Collège de Pédiatrie 2024") | |
user_query = st.text_input("Entrez votre question:") | |
if KNOWLEDGE_VECTOR_DATABASE not in st.session_state: | |
# Initialize the retriever and LLM | |
st.session_state.loader = PyPDFLoader(DATA_FILE_PATH) | |
#loader = PyPDFDirectoryLoader(DATA_FILE_PATH) | |
st.session_state.raw_document_base = st.session_state.loader.load() | |
st.session_state.MARKDOWN_SEPARATORS = [ | |
"\n#{1,6} ", | |
"```\n", | |
"\n\\*\\*\\*+\n", | |
"\n---+\n", | |
"\n___+\n", | |
"\n\n", | |
"\n", | |
" ", | |
"",] | |
st.session_state.docs_processed = split_documents( | |
512, # We choose a chunk size adapted to our model | |
st.session_state.raw_document_base, | |
#tokenizer_name=EMBEDDING_MODEL_NAME, | |
separator=st.session_state.MARKDOWN_SEPARATORS | |
) | |
st.session_state.embedding_model=NVIDIAEmbeddings() | |
st.session_state.KNOWLEDGE_VECTOR_DATABASE= init_vectorDB_from_doc(st.session_state.docs_processed, | |
st.session_state.embedding_model) | |
#if os.path.exists(VECTORDB_PATH): | |
# KNOWLEDGE_VECTOR_DATABASE = FAISS.load_local( | |
# VECTORDB_PATH, embedding_model, | |
# allow_dangerous_deserialization=True) | |
#else: | |
#KNOWLEDGE_VECTOR_DATABASE=init_vectorDB_from_doc(docs_processed, embedding_model) | |
# KNOWLEDGE_VECTOR_DATABASE.save_local(VECTORDB_PATH) | |
if st.button("Get Answer"): | |
# Get the answer and relevant documents | |
#bnb_config = BitsAndBytesConfig( | |
#load_in_8bit=True | |
# load_in_4bit=True, | |
# bnb_4bit_use_double_quant=True, | |
# bnb_4bit_quant_type="nf4", | |
# bnb_4bit_compute_dtype=torch.bfloat16, | |
#) | |
llm = ChatNVIDIA( | |
model=READER_MODEL_NAME, | |
api_key= os.get("NVIDIA_API_KEY"), | |
temperature=0.2, | |
top_p=0.7, | |
max_tokens=1024, | |
) | |
#tokenizer = AutoTokenizer.from_pretrained(READER_MODEL_NAME) | |
#READER_LLM = pipeline( | |
# model=model, | |
# tokenizer=tokenizer, | |
# task="text-generation", | |
# do_sample=True, | |
# temperature=0.2, | |
# repetition_penalty=1.1, | |
# return_full_text=False, | |
# max_new_tokens=500, | |
# token = os.getenv("HF_TOKEN") | |
# ) | |
# RERANKER = RAGPretrainedModel.from_pretrained(RERANKER_MODEL_NAME) | |
# num_doc_before_rerank=15 | |
# num_final_releveant_docs=5 | |
# answer, relevant_docs = answer_with_rag(query=user_query, READER_MODEL_NAME=READER_MODEL_NAME,embedding_model=embedding_model,vectorDB=KNOWLEDGE_VECTOR_DATABASE,reranker=RERANKER, llm=READER_LLM,num_doc_before_rerank=num_doc_before_rerank,num_final_relevant_docs=num_final_releveant_docs,rerank=True) | |
#print(answer) | |
# Display the answer | |
st.write("### Answer:") | |
st.write(answer) | |
# Display the relevant documents | |
st.write("### Relevant Documents:") | |
for i, doc in enumerate(relevant_docs): | |
st.write(f"Document {i}:\n{doc}") | |
if __name__ == "__main__": | |
main() |