Spaces:
Sleeping
Sleeping
# Databricks notebook source | |
import streamlit as st | |
import os | |
import yaml | |
from dotenv import load_dotenv | |
import torch | |
from src.generator import answer_with_rag | |
from ragatouille import RAGPretrainedModel | |
from src.data_preparation import split_documents | |
from src.embeddings import init_embedding_model | |
from langchain_nvidia_ai_endpoints import NVIDIAEmbeddings, ChatNVIDIA | |
from transformers import pipeline | |
from langchain_community.document_loaders import PyPDFLoader | |
from langchain_community.embeddings import HuggingFaceEmbeddings | |
from src.retriever import init_vectorDB_from_doc, retriever | |
from transformers import AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig | |
from langchain_community.vectorstores import FAISS | |
import faiss | |
def load_config(): | |
with open("./config.yml","r") as file_object: | |
try: | |
cfg=yaml.safe_load(file_object) | |
except yaml.YAMLError as exc: | |
logger.error(str(exc)) | |
raise | |
else: | |
return cfg | |
cfg= load_config() | |
#os.environ['NVIDIA_API_KEY']=st.secrets("NVIDIA_API_KEY") | |
#load_dotenv("./src/.env") | |
#HF_TOKEN=os.environ.get["HF_TOKEN"] | |
#st.write(os.environ["HF_TOKEN"] == st.secrets["HF_TOKEN"]) | |
EMBEDDING_MODEL_NAME=cfg['EMBEDDING_MODEL_NAME'] | |
DATA_FILE_PATH=cfg['DATA_FILE_PATH'] | |
READER_MODEL_NAME=cfg['READER_MODEL_NAME'] | |
RERANKER_MODEL_NAME=cfg['RERANKER_MODEL_NAME'] | |
VECTORDB_PATH=cfg['VECTORDB_PATH'] | |
def main(): | |
st.title("Un RAG pour interroger le Collège de Pédiatrie 2024") | |
user_query = st.text_input("Entrez votre question:") | |
if "KNOWLEDGE_VECTOR_DATABASE" not in st.session_state: | |
# Initialize the retriever and LLM | |
st.session_state.loader = PyPDFLoader(DATA_FILE_PATH) | |
#loader = PyPDFDirectoryLoader(DATA_FILE_PATH) | |
st.session_state.raw_document_base = st.session_state.loader.load() | |
st.session_state.MARKDOWN_SEPARATORS = [ | |
"\n#{1,6} ", | |
"```\n", | |
"\n\\*\\*\\*+\n", | |
"\n---+\n", | |
"\n___+\n", | |
"\n\n", | |
"\n", | |
" ", | |
"",] | |
st.session_state.docs_processed = split_documents( | |
400, # We choose a chunk size adapted to our model | |
st.session_state.raw_document_base, | |
#tokenizer_name=EMBEDDING_MODEL_NAME, | |
separator=st.session_state.MARKDOWN_SEPARATORS | |
) | |
st.session_state.embedding_model=NVIDIAEmbeddings(model="NV-Embed-QA", truncate="END") | |
st.session_state.KNOWLEDGE_VECTOR_DATABASE= init_vectorDB_from_doc(st.session_state.docs_processed, | |
st.session_state.embedding_model) | |
if (user_query) and (st.button("Get Answer")): | |
num_doc_before_rerank=5 | |
st.session_state.retriever= st.session_state.KNOWLEDGE_VECTOR_DATABASE.as_retriever(search_type="similarity", | |
search_kwargs={"k": num_doc_before_rerank}) | |
st.write("### Please wait while we are getting the answer.....") | |
llm = ChatNVIDIA( | |
model=READER_MODEL_NAME, | |
api_key= os.getenv("NVIDIA_API_KEY"), | |
temperature=0.2, | |
top_p=0.7, | |
max_tokens=1024, | |
) | |
answer, relevant_docs = answer_with_rag(query=user_query, llm=llm, retriever=st.session_state.retriever) | |
st.write("### Answer:") | |
st.write(answer) | |
# Display the relevant documents | |
st.write("### Relevant Documents:") | |
for i, doc in enumerate(relevant_docs): | |
st.write(f"Document {i}:\n{doc}") | |
if __name__ == "__main__": | |
main() |